DOI QR코드

DOI QR Code

Vibration Analysis of SAR Antenna Reflectors During Satellite Maneuver

위성 기동 시 SAR 안테나 반사판에 발생하는 진동 분석

  • Received : 2019.12.04
  • Accepted : 2020.02.27
  • Published : 2020.03.01

Abstract

Recently, there has been an increasing demand for SAR satellite as it can be operated regardless of the weather condition. In general, main reflector of the SAR is formed of multiple deployable panels to increase performance in the constrained payload envelope. By nature, deployable structure lacks structural stiffness and it is vulnerable to external disturbances and excitation. In particular, SAR satellites may have high levels of vibration occurring at the antenna reflecting surface due to higher angular rate requirements. During image capturing it is important to keep high surface accuracy of the reflector for the quality of images. In this research, a performance degradation of deployable SAR antenna due to structural deformation is analyzed. Panels for main reflectors are assumed to be flexible structures and multi-body simulation environment is established. Then, deflection of the panel is calculated while the satellite performs maneuvers. In addition, antenna gain and beam pointing error are analyzed to determine how these deflections affect antenna performance and mission.

기상 조건과 상관없이 영상을 획득할 수 있는 SAR 위성에 대한 수요가 최근 들어 계속해서 증가하고 있다. 일반적으로 SAR 안테나의 주반사판은 제한적인 탑재체의 공간에 효율적으로 수납하기 위해 여러 개의 전개 가능한 패널로 구성된다. 전개형 구조물은 본질적으로 구조적 강성이 부족하며 외란이나 가진에 취약하다. 특히, SAR 위성은 더 높은 각속도 요구조건 때문에 안테나 반사면에 발생하는 진동 수준이 높을 수 있다. 이미지를 얻는 동안 이미지의 품질을 위해 반사판의 높은 표면 정확도를 유지하는 것은 중요하다. 본 연구에서는 전개형 SAR 안테나의 구조적 변형 때문에 발생하는 성능 저하를 분석한다. 주반사판의 패널은 유연 구조물로 가정하였으며, 다물체 동역학 시뮬레이션 환경을 구축하였다. 이를 통해, 위성의 기동 시 패널의 변형량을 계산한다. 또, 이러한 변형이 안테나 성능과 임무 수행에 얼마나 영향을 미치는지 확인하기 위해, 안테나 이득 및 빔 지향오차를 분석하였다.

Keywords

References

  1. Cumming, I. G., and Woong, F. H., Digital Processing of Synthetic Aperture Radar Data, Artech house, 2005.
  2. Jeong, S. Y., Lee, S. Y., Bae, M. J., and Cho, K. D., "Configuration Design of a Deployable SAR Antenna for Space Application and Tool-kit Development," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 8, 2014, pp. 683-691. https://doi.org/10.5139/JKSAS.2014.42.8.683
  3. Lee, S. Y., Jeong, S. Y., Nah, G. S., and Cho, K. D., "Static/Dynamic Behavior Analysis of Deployment Mechanism Joints of a SAR Satellite," Proceedings of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2014, pp. 1160-1163.
  4. Hedgepeth, J. M., "Influence of Fabrication Tolerances on the Surface Accuracy of Large Antenna Structures," AIAA Journal, Vol. 20, No. 5, 1982, pp. 680-686. https://doi.org/10.2514/3.7936
  5. Mittermayer, J., and Moreira, A., "Spotlight SAR Data Processing Using the Frequency Scaling Algorithm," IEEE Transactions on Geoscience and Reomote Sensing, Vol. 37, No. 5, 1999, pp. 2198-2214. https://doi.org/10.1109/36.789617
  6. Schmid, M., and Barho, R., "Development Summary and Test Results of a 3 meter Unfurlable CFRP Skin Antenna Reflector," Proceeding of the 10th European Space Mechanisms and Tribology Symposium, Vol. 524, 2003, pp. 145-151.
  7. Cazaurang, F., and Lavigne, L., "Satellite Path Planning by Flatness Approach," International Review of Aerospace Engineering, Vol. 2, No. 3, 2009, pp. 123-132.
  8. Dastkhosh, A. R., Hamidreza D. O., and Gholamreza K., "Compact Low Weight High Gain Broadband Antenna by Polarization-rotation Technique for X-band Radar," International Journal of Antennas and Propagation, Vol. 2014, 2014, pp. 1-10.
  9. Anderson, H. R., Fixed Broadband Wireless System Design, John Wiley & Sons, 2003.
  10. Yeap, K. H., Loh, M. C., Tham, C. Y., Yiam, C. Y., Yeong, K.. C., and Lai, K. C., "Analysis of Reflector Antennas in Radio Telescopes," Advanced Electromagnetics, Vol. 5, No. 3, 2016, pp. 32-38. https://doi.org/10.7716/aem.v5i3.402