DOI QR코드

DOI QR Code

Fracture toughness of amorphus SiC thin films using nanoindentation and simulation

  • Mamun, M.A. (Department of Mechanical and Aerospace Engineering, Old Dominion University) ;
  • Elmustafa, A.A. (Department of Mechanical and Aerospace Engineering, Old Dominion University)
  • Received : 2019.03.25
  • Accepted : 2020.03.03
  • Published : 2020.03.25

Abstract

Fracture toughness of SiC on Si thin films of thicknesses of 150, 750, and 1500 nm were measured using Agilent XP nanoindenter equipped with a Dynamic Control Module (DCM) in Load Control (LC) and Continuous Stiffness Method (CSM) protocols. The fracture toughness of the Si substrate is also measured. Nanovision images implied that indentations into the films and well deep into the Si caused cracks to initiate at the Si substrate and propagate upward to the films. The composite fracture toughness of the SiC/Si was measured and the fracture toughness of the SiC films was determined based on models that estimate film properties from substrate properties. The composite hardness and modulus of the SiC films were measured as well. For the DCM, the hardness decreases from an average of 35 GPa to an average of 13 GPa as the film thick increases from 150 nm to 1500 nm. The hardness and moduli of the films depict the hardness and modulus of Si at deep indents of 12 and 200 GPa respectively, which correlate well with literature hardness and modulus values of Si. The fracture toughness values of the films were reported as 3.2 MPa√m.

Keywords

References

  1. Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.B. (1981), "A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements", J. Am. Ceramic Soc., 64, 533-538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  2. Bhattacharya, A.K. and Nix, W.D. (1988), "Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates", Int. J. Solids Struct., 24, 1287-1298. https://doi.org/10.1016/0020-7683(88)90091-1
  3. Borrero-Lopez, O., Hoffman, M., Bendavid, A. and Martin, P.J. (2010), "The use of the scratch test to measure the fracture strength of brittle thin films", Thin Solid Films, 518, 4911-4917. https://doi.org/10.1016/j.tsf.2010.04.015
  4. Buckle, H. Ed. (1973), The Science of Hardness Testing and its Research Applications, American Society for Materials; Metals Park, OH, USA.
  5. Burnett, P.J. and Rickerby, D.S. (1987a), "The mechanical properties of wear-resistant coatings I: modelling of hardness behavior", Thin Solid Films, 148, 41-50. https://doi.org/10.1016/0040-6090(87)90119-2
  6. Burnett, P.J. and Rickerby, D.S. (1987b), "The mechanical properties of wear-resistant coatings II: experimental studies and interpretation of hardness", Thin Solid Films, 148, 51-65. https://doi.org/10.1016/0040-6090(87)90120-9
  7. Chen, J. (2012), "Indentation-based methods to assess fracture toughness for thin coatings", J. Phys. D: Appl. Phys., 45, 203001. https://doi.org/10.1088/0022-3727/45/20/203001
  8. Chicot, D., Duarte, G., Tricoteaux, A., Jorgowski, B., Leriche, A. and Lesage, J. (2009), "Vickers Indentation Fracture (VIF) modeling to analyze multi-cracking toughness of titania, alumina and zirconia plasma sprayed coatings", Mater. Sci. Eng.: A, 527, 65-76. https://doi.org/10.1016/j.msea.2009.08.058
  9. Chu, Y., Fu, Q., Li, H., Shi, X., Li, K., Wen, X. and Shang, G. (2012), "Effect of SiC nanowires on the mechanical and oxidation protective ability of SiC coating for C/C composites", J. Am. Ceramic Soc., 95(2), 739-745. https://doi.org/10.1111/j.1551-2916.2011.04979.x
  10. Das, J., Patel, P., Reddy, J.J. and Prasad, V.B. (2019), "Microstructure and mechanical properties of a SiC containing advanced structural ceramics", Int. J. Refractory Metals Hard Mater., 84, 105030. https://doi.org/10.1016/j.ijrmhm.2019.105030
  11. Deng, J., Liao, N., Zhang, M. and Xue, W. (2019), "Extended finite element analysis of plastic and fracture behaviors of SiC-based multi layer thin film system", Int. J. Mech. Sci., 161-162, 105017. https://doi.org/10.1016/j.ijmecsci.2019.105017
  12. Doerner, M.F. and Nix, W.D. (1986), "A method for interpreting the data from depth-sensing indentation instruments", J. Mater. Res., 1, 601-609. https://doi.org/10.1557/JMR.1986.0601
  13. Fu, X.A., Dunning, J.L., Mehregany, M. and Zorman, C.A. (2011), "Low stress polycrystalline SiC thin films suitable for MEMS applications", J. Electrochem. Soc., 158(6), H675-H680. https://doi.org/10.1149/1.3575160
  14. Gao, H., Chiu, C.-H. and Lee, J. (1992), "Elastic contact versus indentation modeling of multi-layered materials", Int. J. Solids Struct., 29, 2471-2492. https://doi.org/10.1016/0020-7683(92)90004-D
  15. Guan, K., Zhang, L., Zhu, F., Li, H., Sheng, H. and Guo, Y. (2020), "Multi-layer SiC-graphene oxidehydroxyapatite bioactive coating for carbon/carbon composites", J. Alloys Compounds, 821, 153543. https://doi.org/10.1016/j.jallcom.2019.153543
  16. Jonsson, B. and Hogmark, S. (1984), "Hardness measurements of thin films", Thin Solid Films, 114, 257-269. https://doi.org/10.1016/0040-6090(84)90123-8
  17. Jungk, J.M., Boyce, B.L., Buchheit, T.E., Friedmann, T.A., Yang, D. and Gerberich, W.W. (2006), "Indentation fracture toughness and acoustic energy release in tetrahedral amorphous carbon diamond-like thin films", Acta Materialia, 54, 4043-4052. https://doi.org/10.1016/j.actamat.2006.05.003
  18. King, R.B. (1987), "Elastic analysis of some punch problems for a layered medium", Int. J. Solids Struct., 23, 1657-1664. https://doi.org/10.1016/0020-7683(87)90116-8
  19. Laugier, M.T. (1985), "The elastic/plastic indentation of ceramics", J. Mater. Sci. Lett., 4, 1539-1541. https://doi.org/10.1007/BF00721390
  20. Lawn, B.R., Evans, A.G. and Marshall, D.B. (1980), "Elastic/plastic indentation damage in ceramics: the median/radial crack system", J. Am. Ceramic Soc., 63, 574-581. https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
  21. Lee, J.H., Gao, Y.F., Johanns, K.E. and Pharr, G.M. (2012), "Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials", Acta Materialia, 60, 5448- 5467. https://doi.org/10.1016/j.actamat.2012.07.011
  22. Lemoine, P., Quinn, J.P., Maguire, P.D., Zhao, J.F. and McLaughlin, J.A. (2007), "Intrinsic mechanical properties of ultra-thin amorphous carbon layers", Appl. Surf. Sci., 253, 6165-6175. https://doi.org/10.1016/j.apsusc.2007.01.028
  23. Li, X., Diao, D. and Bhushan, B. (1997), "Fracture mechanisms of thin film amorphous carbon films in nanoindentation", Acta Materialia, 45, 4453-4461. https://doi.org/10.1016/S1359-6454(97)00143-2
  24. Maitre, N., Camelio, S., Barranco, A., Girardeau, T. and Breelle, E. (2005), "Physical and chemical properties of amorphous hydrogenated carbon films deposited by PECVD in a low self-bias range", J. Non-Crystal. Solids, 351, 877-884. https://doi.org/10.1016/j.jnoncrysol.2005.01.058
  25. Mehregany, M., Zorman, C.A., Roy, S., Fleischman, A.J., Wu C.-H. and Rajan, N. (2000), "Silicon carbide for microelectromechanical systems", Int. Mater. Rev., 45, 85-108. https://doi.org/10.1179/095066000101528322
  26. Mishra, P., Bhattacharyya, S.R. and Ghose, D. (2008), "Nanoindentation on single-crystal Si modified by 100 keV Cr+ implantation", Nuclear Instrum. Methods Phys. Res. Section B: Beam Interact. Mater. Atoms, 266,1629-1634. https://doi.org/10.1016/j.nimb.2007.12.036
  27. Mullins, L.P., Bruzzi, M.S. and McHugh, P.E. (2007), "Measurement of the microstructural fracture toughness of cortical bone using indentation fracture", J. Biomech., 40, 3285-3288. https://doi.org/10.1016/j.jbiomech.2007.04.020
  28. Oliver, W.C. and Pharr, G.M. (2004), "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology", J. Mater. Res., 19, 3-20. https://doi.org/10.1557/jmr.2004.19.1.3
  29. Pharr, G.M. (1998), "Measurement of mechanical properties by ultra-lowload indentation", Mater. Sci. Eng. A, 253, 151-159. https://doi.org/10.1016/S0921-5093(98)00724-2
  30. Ponton, C.B. and Rawlings, R.D. (1989), "Vickers indentation fracture toughness test Part 1 Review of literature and formulation of standardised indentation toughness equations", Mater. Sci. Technol., 5, 865-872. https://doi.org/10.1179/mst.1989.5.9.865
  31. Pulecio, S.A.R., Farias, M.C.M. and Souza, R.M. (2010), "Finite element and dimensional analysis algorithm for the prediction of mechanical properties of bulk materials and thin films", Surf. Coatings Technol., 205, 1386-1392. https://doi.org/10.1016/j.surfcoat.2010.07.039
  32. Sarro, P.M. (2000), "Silicon carbide as a new MEMS technology", Sensors Actuat. A: Phys., 82, 210-218. https://doi.org/10.1016/S0924-4247(99)00335-0
  33. Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.S., Kondo, S. and Petti, D.A. (2007), "Handbook of SiC properties for fuel performance modeling", J. Nuclear Mater., 371, 329-377. https://doi.org/10.1016/j.jnucmat.2007.05.016
  34. Swaminathan, N., Kamenski, P.J., Morgan, D. and Szlufarska, I. (2010), "Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC", Acta Materialia, 58, 2843-2853. https://doi.org/10.1016/j.actamat.2010.01.009
  35. Stone, D.S. (1990), "Elastic analysis to aid in extracting thin film elastic moduli from continuous indentation data", J. Electronic Packaging, 112, 41-46. https://doi.org/10.1115/1.2904339
  36. Sun, J.Y. and Tong, J. (2007), "Fracture toughness properties of three different biomaterials measured by nanoindentation", J. Bionic Eng., 4, 11-17. https://doi.org/10.1016/S1672-6529(07)60007-9
  37. Rafaniello, W., Cho, K. and Virkar, A.V. (1981), "Fabrication and characterization of SiC-AlN alloys", Journal of Materials Science, 16, 3479-3488. https://doi.org/10.1007/BF00586311
  38. Xia, Z., Curtin, W.A. and Sheldon, B.W. (2004), "A new method to evaluate the fracture toughness of thin films", Acta Materialia, 52, 3507-3517. https://doi.org/10.1016/j.actamat.2004.04.004
  39. Yu, H.Y., Sanday, S.C. and Rath, B.B. (1990), "The effect of substrate on the elastic properties of films determined by the indentation test-axisymmetric Boussinesq problem", J. Mech. Phys. Solids, 38, 745-764. https://doi.org/10.1016/0022-5096(90)90038-6
  40. Zhang, S. and Zhang, X. (2012), "Toughness evaluation of hard coatings and thin films", Thin Solid Films, 520, 2375-2389. https://doi.org/10.1016/j.tsf.2011.09.036
  41. Zhang, H., Lopez-Honorato, E., Javed, A., Zhao, X., Tan, J. and Xiao, P. (2012), "A study of the microstructure and mechanical properties of SiC coatings on spherical particles", J. Eur. Ceramic Soc., 32, 1775-1786. https://doi.org/10.1016/j.jeurceramsoc.2011.12.014