DOI QR코드

DOI QR Code

Corrosion resistance of a carbon-steel surface modified by three-dimensional ion implantation and electric arc.

  • Valbuena-Nino, E.D. (Foundation of Researchers in Science and Technology of Materials) ;
  • Gil, L. (Universidad Nacional Experimental Politecnica) ;
  • Hernandez, L. (Universidad Nacional Experimental Politecnica) ;
  • Sanabria, F. (Foundation of Researchers in Science and Technology of Materials)
  • 투고 : 2019.12.13
  • 심사 : 2020.02.28
  • 발행 : 2020.03.25

초록

The hybrid method of three-dimensional ion implantation and electric arc is presented as a novel plasma-ion technique that allows by means of high voltage pulsed and electric arc discharges, the bombardment of non-metallic and metallic ions then implanting upon the surface of a solid surface, especially out of metallic nature. In this study AISI/SAE 4140 samples, a tool type steel broadly used in the industry due to its acceptable physicochemical properties, were metallographically prepared then surface modified by implanting titanium and simultaneously titanium and nitrogen particles during 5 min and 10 min. The effect of the ion implantation technique over the substrate surface was analysed by characterization and electrochemical techniques. From the results, the formation of Ti micro-droplets upon the surface after the implantation treatment were observed by micrographs obtained by scanning electron microscopy. The presence of doping particles on the implanted substrates were detected by elemental analysis. The linear polarization resistance, potentiodynamic polarization and total porosity analysis demonstrated that the samples whose implantation treatment with Ti ions for 10 min, offer a better protection against the corrosion compared with non-implanted substrates and implanted at the different conditions in this study.

키워드

과제정보

The authors acknowledge the "Física y Tencnología del Plasma y Corrosión" research group, Laboratorio de Espectroscopía from Universidad Industrial de Santander and DIM-ETSI Industriales from Universidad Politécnica de Madrid for the generous collaboration in the acquisition of data and results.

참고문헌

  1. Aguero, A. (2007), "Ingenieria de superficies y su impacto medioambiental", Rev de Metal., 43(1), 63-75.
  2. American Society of Testing Materials (ASTM) (2013), Standard specification for steel bars, alloy, standard grades; ASTM International, Standard No. ASTM A322-13, West Conshohocken, PA, USA.
  3. American Society of Testing Materials (ASTM) (2014a), Standard practice for conventions applicable to electrochemical measurements in corrosion testing; ASTM International, Standard No. ASTM G3-14, West Conshohocken, PA, USA.
  4. American Society of Testing Materials (ASTM) (2014b), Standard reference test method for making potentiodynamic anodic polarization measurements; ASTM International, Standard No. ASTM G5-14, West Conshohocken, PA, USA.
  5. Chang, M., Su, J., Hu, G., Zhai, B., Meng, D., Sun, L., Chen, Y., Li, Y. and Cui, Y. (2016), "Enhancement of corrosion resistance of a biomedical grade NiTi shape memory alloy by cyclic potentiodynamic polarization in PBS solution", Int. J. Electrochem. Sci., 11, 1092-1098.
  6. Correa Ballesteros, F., Caicedo Angulo, J.C., Aperador Chaparro, W.A., Rincon Castro, C.A. and Bejarano Gaitan, G. (2008), "Mejoramiento de la resistencia a la corrosion del acero AISI 4140 utilizando multicapas de titanio/nitruro de titanio", Rev. Fac. Ing. Univ. Antioquia, 46, 7-14.
  7. Dugar-Zhabon, V.D., Moreno, H.J.D., Villamizar, H.A.G. and Nino, E.D.V. (2002), "High voltage pulse discharge for ion treatment of metals", Rev. Sci. Instrum., 73(2), 828-830. https://doi.org/10.1063/1.1429785
  8. Dugar-Zhabon, V.D., Moreno, H.J.D., Villamizar, H.A.G. and Nino, E.D.V. (2012), "A new method for surface modifications of carbon steels and alloys", 15(6), 969-973. https://doi.org/10.1590/S1516-14392012005000133
  9. Dulce-Moreno, H.J. (2015), "Descargas electricas y sus aplicaciones", Ecomatematic, 6(1), 6-21. https://doi.org/10.22463/17948231.447
  10. Escobar, C., Caicedo, J.C., Aperador, W., Delgado, A. and Prieto, P. (2013), "Improve on corrosion resistant surface for AISI 4140 steel coated with VN and HfN single layer films", Int. J. Electrochem. Sci., 8, 7591-7607.
  11. Jothi, K.J. and Palanivelu, K. (2016), "Praseodymium oxide modified hybrid silane coatings for anticorrosion applications", Surf. Eng., 32(1), 47-52. https://doi.org/10.1179/1743294414Y.0000000333
  12. Karimi, M.V., Sinha, S.K., Kothari, D.C., Khanna, A.K. and Tyagi, A.K. (2002), "Effect of ion implantation on corrosion resistance and high temperature oxidation resistance of Ti deposited 316 stainless steel", Surf. Coat. Technol., 158-159, 609-614. https://doi.org/10.1016/S0257-8972(02)00319-5
  13. Khvesyuk, V.I. and Tsygankov, P.A. (1997), "The use of a high voltage discharge at low pressure for 3D ion implantation", Surf. Coat. Technol., 96(1), 68-74. https://doi.org/10.1016/S0257-8972(97)00117-5
  14. Liu, C., Bi, Q., Leyland, A. and Matthews, A. (2003), "An electrochemical impedance spectroscopy study of corrosion behavior of PVD coated steel in 0.5N NaCl aqueous solution: Part II. EIS interpretation of corrosion behavior", Corr. Sci., 45(6), 1257-1273. https://doi.org/10.1016/S0010-938X(02)00214-7
  15. Manory, R. (1987), "Effects of deposition parameters on structure and composition of reactively sputtered TiNx films", Surf. Eng., 3, 233-238. https://doi.org/10.1179/sur.1987.3.3.233
  16. Mussada, E.K. and Patowari, P.K. (2015), "Characterisation of layer deposited by electric discharge coating process", Surf. Eng., 31(10), 796-802. https://doi.org/10.1179/1743294415Y.0000000048
  17. Mussada, E.K. and Patowari, P.K. (2017), "Post processing of the layer deposited by electric discharge coating", Mater. Manuf. Process., 32(4), 442-449. https://doi.org/10.1080/10426914.2016.1198021
  18. Sanabria, F., Viejo, F. and V-Nino, E.D. (2019), "Performance in saline environment of a carbon steel surface modified by three-dimensional ion implantation", J. Physics: Conf. Ser., 1403, 012015. https://doi.org/10.1088/1742-6596/1403/1/012015
  19. Soares, M.E., Soares, P., Souza, P.R., Souza, R.M. and Torres, R.D. (2017), "The effect of nitriding on adhesion and mechanical properties of electroless Ni-P coating on AISI 4140 steel", Surf. Eng., 33(2), 116-121. https://doi.org/10.1080/02670844.2016.1148831
  20. Stern, M. and Geary, A.L. (1957), "Electrochemical Polarization: a theoretical analysis of the shape of polarization curves", J. Electrochem. Soc., 104(1), 56-63. https://doi.org/10.1149/1.2428496
  21. Tsygankov, P.A., Becerra, F.P., Dugar-Zhabon, V.D., Plata, A. and V-Nino, E.D. (2016), "Artificially modulated hard coatings produced with a vacuum arc evaporator", J. Phys. Conf. Ser., 687(1), 1-4. https://doi.org/10.1088/1742-6596/687/1/012005
  22. Valbuena-Nino, E., Tsygankov, P., Plata, A., Ochoa, C., Parada, F., Chacon, C. and Dugar-Zhabon, V. (2011), "Study of volt-ampere characteristics and functioning peculiarities of a vacuum arc sprayer", Rev. Col. de Fis., 43(2), 458-462.
  23. Valbuena-Nino, E., Pinto, J.L., Dugar-Zhabon, V. and Henao, J.A. (2012), "Chemical characterization of 4140 steel implanted by nitrogen ions", J. Phys. Conf. Ser., 370(012031), 1-7. https://doi.org/10.1088/1742-6596/370/1/012031
  24. Valbuena-Nino, E.D., Gil, L., Hernandez-Molina, L., Barba-Ortega, J.J. and Dugar-Zhabon, V. (2016), "Characterization of the low alloy steel modified superficially with ions of titanium and nitrogen", CT&F, 6(3), 135-146.
  25. Vasilescu, C., Drob, S., Calderon J., Osiceanu, P., Popa, M., Vasilescu, E., Marcu, M. and Drob, P. (2015), "Long-term corrosion resistance of new Ti-Ta-Zr alloy in simulated physiological fluids by electrochemical and surface analysis methods", Corros. Sci., 93, 310-323. https://doi.org/10.1016/j.corsci.2015.01.038
  26. Vladescu, A., Cotrut, C., Braic, V., Balaceanu, M. and Braic, M. (2004), "Biocompatible thin films deposited by cathodic arc method", Roman. Rep. Phys., 56(3), 460-465.
  27. Winnicki, M., Baszczuk, A., Rutkowska-Gorczyca, M., Malachowska, A. and Ambroziak, A. (2016), "Corrosion resistance of tin coatings deposited by cold spraying", Surf. Eng., 32(9), 691-700. https://doi.org/10.1080/02670844.2016.1190064