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Abstract 

 
Spoofing attacks, especially replay attacks, pose great security challenges to automatic 
speaker verification (ASV) systems. Current works on replay attacks detection primarily 
focused on either developing new features or improving classifier performance, ignoring the 
effects of feature variability, e.g., the channel variability. In this paper,  we first establish a 
mathematical model for replay speech and introduce a method for eliminating the negative 
interference of the channel. Then a novel feature is proposed to detect the replay attacks. To 
further boost the detection performance, four post-processing methods using normalization 
techniques are investigated. We evaluate our proposed method on the ASVspoof 2017 dataset. 
The experimental results show that our approach outperforms the competing methods in terms 
of detection accuracy. More interestingly, we find that the proposed normalization strategy 
could also improve the performance of the existing algorithms. 
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1. Introduction 

Automatic speaker verification system (ASV) has been widely used in finance and life 
applications due to its convenience, high security, and remote operability [1]. While the ASV 
technology is constantly evolving, various spoofing attacks on ASV systems emerge [2]. 
Spoofing attacks can be generally classified into four categories: voice conversion 
impersonation, replay speech and synthesis speech. We focus on replay attacks, which is 
regarded as the most flexible, easiest spoofing attacks. The main reason is that with the 
widespread use of high-fidelity recording and playback device, it is easy to record the voice of 
the target speaker. No signal processing expertise is needed, making replay spoofing attacks 
easy to implement. 

In the last decades, Shang et al. [3] and Jakub et al. [4] proposed a replay attacks detection 
algorithm by comparing a test recording with the recordings that exist in the database. Wang et 
al. [5] developed a method by using channel information to detect replay attacks. However, 
these works used a database collected with a small set of recording and playback devices. 
Recently, the ASVspoof 2017 challenge [6] put its focus on replay attacks, which has received 
extensive attention from researchers. Constant Q cepstral coefficients (CQCC), which is 
proposed by Todisco M et al. [7], was adopted in the baseline system for this challenge. After 
that, various features were used in recent literature to improve the performance of replay 
detection, such as the inverted Mel-frequency cepstral coefficients (IMFCC) [8], single 
frequency filtering coefficients (SFFCC) [9], high-frequency cepstral coefficients (HFCC) 

[10], and linear frequency cepstral coefficients (LFCC) [11]. All these works used CQCC 
features as baseline features and a Gaussian Mixture Model (GMM) classifier for the final 
classification. 

Current research on replay detection has concentrated on either developing new features or 
improving the classifier, implicitly ignoring the variability of features. The variability of 
features includes acoustic variability, channel variability, speaker variability, etc. The most 
influential on replay attacks detection is the channel variability, which is most likely to change 
in the practical terms. The main reason is that the recording device and playback device used 
by the attacker are usually unknown to the detector. If we cannot eliminate the channel effects 
brought by the device, the robustness of the feature will be significantly reduced. However, 
few works noticed that eliminating channel effects could improve detection performance. 

In our previous research on ASVspoof 2017 dataset, we performed a detailed analysis of the 
differences between genuine speech and the replay speech on the frequency sub-bands. Our 
research showed that the discriminative information of genuine speech and replay speech is 
mainly distributed in two sub-bands, i.e., 0-1 kHz and 7-8 kHz [12][13]. one plausible 
explanation for this observation can be as follows. In the replay speech, the reverberation 
information and channel noise caused by the recording and playback devices usually have 
low-frequency components, whereas the environment noises are often in the high-frequency 
bands [14]. Based on this observation, in this paper, we first establish a mathematical model 
for genuine speech and replay speech. Then we propose a method by using a band-stop filter 
on speech signals to emphasize discriminant sub-bands. Finally, the cepstrum feature named 
band-stop filter cepstral coefficient (SFCC) is then extracted based on the residual signal. 
SFCC can not only effectively extract the spectral information of the high-frequency region, 
but also can describe the low-frequency spectrum information in detail. To improve the 
detection performance of our method, four normalization techniques for eliminating channel 
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effects are also adopted to our features. Experimental results show that our algorithm can 
effectively detect replay speech. It also proves that eliminating channel effects can actually 
improve the detection performance of the existing algorithms.  

The contribution of this paper can be summarized as follows: 
● By analyzing the influence of channel variability on features, a simple but effective 

solution to discriminate genuine speech and replay speech is proposed. 
● We propose a novel feature, SFCC, that can capture low-frequency information and 

high-frequency information of the spectrum. Experimental results show that our algorithm can 
effectively detect replay speech. 

●We establish a mathematical model for genuine speech and replay speech, and proposed a 
method that uses normalization techniques to eliminate the effects of the channel. This 
approach significantly boosts the robustness of the feature, which could benefit the existing 
algorithm as well.  

The rest of this paper is organized as follows. Section 2 briefly reviews the related works. 
Our method is introduced in Section 3. The experimental results are presented in Section 4. 
Section 5 concludes this work. 

2. Related Works 

2.1 Replay Attacks 
Replay attacks are considered one of the easiest and most effective way of spoofing attacks. 
The main reason is that it does not require any special signal processing knowledge for an 
attacker,  only a recording device can be implemented. Replay attacks are exemplified by a 
scenario in Fig. 1. It can be seen that the genuine speech is directly from the target speaker's 
voice, and the replay speech is obtained by the attacker recording the target speaker's voice and 
then playing it back. By denoting  the speech signal by s , and replay channel response is h , 
the replay speech signal r is can be represented by the following linear convolution process: 

= ⊗r s h .                                                                      (1) 

It can be seen from (1) that the difference between genuine and replay speech is mainly 
caused by different channels ( i.e., h ). Therefore, how to effectively extract the essential 
discriminative information between replay speech and genuine speech due to different 
channels is the key to detecting replay attacks. Currently, researchers have proposed some 
effective replay attacks detection algorithms. In the next, we briefly review some related 
papers. 
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Fig. 1. An illustration of the replay attacks. (a) is the genuine speech generation process, genuine speech 

is a recording of a bona fide access to the microphone of the ASV system. (b) is the replay speech 
generation process. Replay speech is a spoofing recording in which an attacker records the target 

speaker's voice and later plays it back to an ASV system 

2.2 Methods for Detecting Replay Attacks 
Features based on the short-term spectrum are widely used in spoofing detection. In this paper, 
we focus on several cepstral features that perform well in replay attacks detection, namely, 
CQCC, LFCC, IMFCC and HFCC. 

The recently proposed CQCC feature has proven to be effective in the replay attacks 
detection [7]. CQCC is a spectro-temporal resolution variable feature that is derived from a 
constant Q transform (CQT). Although the CQCC feature provides more spectral detail 
information in the low-frequency region, the discriminative information in the high-frequency 
region is totally neglected.  

LFCC feature is a cepstrum-based feature. Unlike CQCC, LFCC employs a discrete Fourier 
transform(DFT). It is an efficient tool for time-frequency analysis, which imposes regularly 
spaced frequency bins. The LFCC feature extracts the information of the entire frequency 
band. In fact, the spoofing information is mainly distributed in the low- frequency and 
high-frequency sub-bands. Therefore the LFCC feature is not able to provide more spectral 
detail in the discriminative frequency bands.  

IMFCC is another cepstrum-based feature. The processing steps of the IMFCC feature are 
similar to LFCC feature extraction chain with the exception of the filters. In IMFCC feature, 
filters have denser spacing in the high-frequency region. Therefore, IMFCC feature can 
capture more spectrum information in the high-frequency region, but inevitably ignores 
low-frequency details.  

Similar to I-MFCC, HFCC feature also concentrates on high-frequency information. In the 
pre-processing step of the HFCC feature, the speech signal is filtered using a high-pass filter. 
Only the high-frequency information is retained for the extraction of cepstral features. 
However, this feature also ignores the difference between genuine speech and replay speech in 
the low-frequency region. 

In the following, we will first establish a mathematical model of the replayed speech and 
then analyze how to remove the effects of the channel. Finally, we will present our method for 
detecting replay attacks.  
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3. Proposed method 

3.1 Mathematical Model of Replay Speech 
In this subsection, we first establish a mathematical model of the replay speech and then 
analyze how to remove the influence of the channel. We know that the replay speech signal 
r is a linear convolution of a genuine speech signal s  and impulse response of the channel h . 
To analyze the impact of the channel, the convolutive relationship between s and h  can be 
transformed into a multiplicative relationship in the frequency domain by taking DFT given 
by：  

( ) ( )
( ) ( )

F r F s h
F s F h

= ⊗
= ×

,                                                  (2) 

where (.)F  is the Fourier transform function, ( )F r , ( )F s  is the spectrum vectors of replay 
speech and genuine speech, respectively, and ( )F h is impulse response of channel in the 
frequency domain. Further, we transform the multiplicative relationship between ( )F s  and 

( )F h into the additive relationship of cepstrum by taking logarithm, which is： 
=log[F( )]

log[ ( ) ( )]
log ( )+log ( )

R r
F s F h
F s F h

S H

= ×
=
= +

 ,                                           (3) 

where R , S , H are the cepstral vectors of replay speech, genuine speech and impulse response 
of the channel, respectively. In an utterance, the channel change is extremely weak, so we can 
reasonably assume that channel response H does not change [15].  

Although the information of the replay channel is helpful for replay attacks detection. We 
prefer to use the influences other than those caused by channel differences to discriminate 
between genuine speech and replay speech. The main reason is that in the practical scenario, 
one does not know the recording and playback devices used by the attacker. As a result, it is 
difficult to establish an accurate model of the channel used by the attacker. Therefore, how to 
effectively remove the channel effect is crucial for detecting replay attacks. 

 

3.2 Remove the Channel Effects 
It is well known that in the cepstral domain any convolutional distortions are represented by 
addition. As we have mentioned before, we intend to use the influences other than those 
caused by channel differences to discriminate between genuine speech and replay speech. 
Therefore, we in this section discuss how to remove the influence of the channel.  

In the preprocessing stage, the speech signal is split up into overlapping frames. We can 
observe that for every -thn frame cepstral coefficient is: 

 n nR S H= +  ,                                                               (4) 
where nR , nS are the cepstral coefficients of each frame of replay speech and genuine speech, 
respectively. It should be emphasized that in the analysis, we assume that channel response is 
not changing in an utterance. By taking the average over all frames, we get: 

1 1
nR n n

n n
R S H

N N
µ = = +∑ ∑ ,                                        (5) 
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where
nRµ is the mean of the cepstral coefficient. By further subtracting the average from each 

coefficient we can obtain: 

1) ( )

1

nn n R

n n
n

n n
n

C R

S H S H
N

S S
N

µ= −

= + − +

= −

∑

∑

（ ,                                       (6) 

where nC  is the final signal with channel influences removed.  
In the next, we will introduce the features proposed in this paper and the four 

post-processing methods used to eliminate channel effects 

3.3 Feature Extraction 
In our preliminary studies [12][13], we found that the spoofing information is mainly 
distributed in the low-frequency region (0-1kHz) and the high-frequency region (7-8 kHz) of 
the spectrum.  Therefore, the SFCC feature proposed in this paper is based on these two 
discriminative sub-bands. SFCC is a cepstrum feature that captures low frequency and 
high-frequency information of the spectrum through band-stop filtering. Fig. 2. shows the 
extraction process of SFCC features. 

 
Fig. 2. SFCC Feature Extraction Process. log ( )E n  is the log-energy coefficient. Static represents the 

coefficients of the DCT.  Delta and acceleration represent the delta coefficients and delta-delta 
coefficients of the static coefficients. 

                                             
First, the speech signal is filtered using a Chebyshev band-stop filter. Then, the residual 

signal is split up into overlapping frames. After that, the power spectrum of each frame is 
derived from a DFT, given by 

2|X ( )|DFTSF( k , k ,nn ) = ,                                               (7) 
where 1,2...,k K= represents the frequency bin index, n  represents the frame index, and 
X ( , )DFT k n  is the spectral coefficient derived by DFT, and SF( k ,n ) is the power spectral 
coefficient. Finally, the power spectrum coefficient is logarithmically computed and converted 
to cepstral coefficients by adopting the discrete cosine transform (DCT), which is: 

log
( )

( ) [ ( )]cos
K

k

1p k - p
2C p,n = SF k,n

K

 
 
 
 
 

∑ ,                                   (8) 
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where p is the dimension of features, C(p,n)  is the cepstral coefficient. In addition, we also 
added a log-energy coefficient in the SFCC feature vector. The log-energy coefficient 

[ ]log ( )E n  can be calculated according to: 

2

1
log[ ( )] log |X ( , )| log[K]

K
DFT

k
E n k n

=

 
= − 

 
∑ ,                                    (9) 

The final feature vector consists of 121 dimensions, including 40-dimensional static 
coefficients, 40-dimensional delta coefficients, 40-dimensional acceleration (delta-delta) 
coefficients, and 1-dimensional log-energy coefficient.  

3.4 Normalization as Post-processing 
In this subsection, we will perform a post-processing method on the extracted cepstral features 
to eliminate channel effects. The post-processing of features mainly includes four 
normalization methods, namely, cepstral mean subtraction (CMS), cepstral mean and variance 
normalization (CMVN), cepstral gain normalization (CGN) and quantile-based cepstral 
dynamics normalization (QCN). In the following, we will briefly describe each of these 
methods. 

CMS [16] is efficient normalization technique for ASV system. It normalizes the cepstrum 
feature by subtracting the mean of the cepstrum, which can be expressed as  

,, , p n

CMS
p n p n CC C µ= −  ,                                                 (10) 

where  ,p nC  is the cepstral vector,  ,
CMS
p nC is the cepstral vector performed to CMS, 

,p nCu is the 
mean of each cepstral vector, p  represents the dimension of cepstral and n is the frame index. 

CMVN not only subtracts the mean for each dimension cepstrum but also normalizes the 
variance of the cepstrum features [17]. The process of CMVN can be described as 

,

,

,
, ˆ

p n

p n

p n CCMVN
p n

C

C
C

µ

σ

−
=  ,                                                (11) 

where ,
CMVN
p nC  is the cepstral vector performed to CMVN, 

,
ˆ

p nCσ  represents the variance of each 
cepstral vector. 

CMN and CMVN assume that the distributions of cepstral coefficients are Gaussian. 
However, the distribution of cepstrums in practice is not the case. Therefore, a new 
normalization method CGN [18] was proposed to solve this issue. The CGN can be expressed 
as  

,,
,

, ,

p np n CCGN
p n

p max p min

C
C

C C

m−
=

−
  ,                                             (12) 

where ,
CGN
p nC is the cepstral vector performed to CGN, ,p maxC and ,p minC  are the maximum and 

minimum values of each dimension.  
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QCN [19], which is proposed by H. Boril et al., mainly used to reduce the mismatch between 
training and test sample distribution. The QCN determines the dynamic range of the cepstral 
feature by cepstrum histogram quantile [20].  QCN first subtracts the quantile mean from all 
samples and then normalizes it according to the dynamic range of the quantile. The process of 
QCN can be described as 

, ,

, ,

, 100
,

100

( + ) / 2p n p n

j

p n p n

C C
QCN p n j j
p n C C

j j

C q q
C

q q
−

−

−
=

−
,                                   (13) 

where ,
jQCN

n iC is the cepstral vector performed to QCN, j  is in percent, nC
jq  and 100

nC
jq −  are low 

and high quantiles of cepstral distributions for each cepstral dimension. 

4. Experimental Results  

4.1 Experimental Setup 

4.1.1 Dataset 
The detection performance of the replay attacks method is evaluated on ASVspoof 2017 
Challenge dataset [21] [22]. This database contains three non-overlapping subsets: train (Tra) 
set, development (Dev) set and evaluation (Eval) set. In the ASVspoof 2017 Challenge, the 
train subset (i.e., Tra) and the development subset (i.e., Dev) were provided in the early stage. 
The Dev subset is a small dataset that is used primarily for the team to debug algorithm 
parameters, while the Evaluation (i.e., Eval) subset is released later by the organizer to 
evaluate the team's algorithms. The details of the dataset are shown in Table 1. In this paper, 
we use the Tra set to train the classifier, and the Dev set and Eval set is used for testing.  
 

Table 1. Experimental setup for data from the ASV spoof 2017. 

Dataset # Speaker # Replay 
session 

# Replay 
Configuration 

# Replay 
speech 

# Genuine 
speech 

Train (Tra) 10 6 3 1508 1508 
Development (Dev) 8 10 10 760 950 
Evaluation (Eval) 24 161 57 1298 12008 
Total 42 177 61 3565 14465 

 

4.1.2 Feature Parameters 
Features based on the short-term spectrum are widely used in spoofing detection. In this work, 
we focus on several cepstral features that perform well in replay attacks detection [11], namely, 
IMFCC, LFCC, HFCC, and CQCC. The features and their parameters used in this study are 
the same as given reference. A summary of the features and their parameters used in this study 
is shown in Table 2. ∆  and 2∆  is the delta and acceleration (delta-delta) of the static 
coefficients. “√” represents the use of parameters, and “-” represents not use. 
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Table 2. Experimental setup for features and their parameters  

Feature 
Frame 
length 
/shift 

Window 
function 

DFT or 
CQT 
bins 

coefficients Post- 
processing Static Log-energy deltas 

CQCC 1728/864 Hanning 863 0 19c c−  √ 2∆ + ∆  CMVN 
IMFCC 512/256 Hamming 512 0 13c c−  - ∆  - 
HFCC 512/256 Hamming 512 0 29c c−  - 2∆ + ∆  - 
LFCC 512/256 Hamming 512 0 69c c−  - 2∆ + ∆  - 
SFCC 256/128 Hanning 256 0 29c c−  √ 2∆ + ∆  QCN 

4.1.3 Classifier and Metrics 
The classifier used in this paper is a GMM model of 256 components. First, different models 
for genuine speech ( gλ ) and replay speech ( sλ ) are learned using an expectation 
maximization (EM) algorithm with random initialization. Then classifier scores of test- 
utterance are calculated by log-likelihood ratio, which is 

( ) log[ ( )] log[ ( )]g sLLR X = L X | - L X |ll  ,                          (14) 

where ( )LLR X  represents the log-likelihood ratio of X , X  is a sequence of feature vectors, 
L  denotes the likelihood function, and gλ , sλ  represent the GMMs for genuine speech and 
replay speech, respectively. Replay detection accuracy is measured by computing equal error 
rate (EER) [7]. Denoting the false alarm rates and miss rates at the threshold θ  by 

( )falseP θ and ( )missP θ : 

 #{spoof trials with score }( )
#{Total spoof trials}falseP θθ >

=     ,                           (15) 

#{genuine trials with score }( )
#{Total genuine trials}missP θθ <

=  .                            (16) 

The false alarm rates and miss rates depend on the threshold θ .  When the two rates are equal 
at the threshold EERθ  , the value is called EER, i.e., ( ) ( )false EER miss EEREER P Pθ θ= = . 

4.2 Experimental Results 
We conduct the experiments separately on the Dev set and Eval set of ASVspoof 2017 dataset. 
The first experiment shows differences in performance for various features. The second 
experiment assesses improvements to the performance delivered by various post-processing 
methods. In the third experiment, we evaluate the effect of the size of the training set on the 
detection performance.  

4.2.1 Comparison of Features  
In our first experiment, we compare the performance of various features. A summary of the 
features and their parameters used in this paper is shown in Table 2. The experimental results 
are shown in Table 3.  

It can be observed that on the Dev set, the IMFCC without any post-processing method 
achieves the best performance. However, on the Eval set, the detection performance of this 
feature is very unsatisfactory. Overfitting may be a reasonable explanation for this problem. 
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One knows that Dev set only includes a small number of samples, while the Eval data set 
contains more diverse samples, so the detection performance on the Eval set is more able to 
measure the detection ability of the algorithm. As can be seen from Table 3, our method using 
QCN normalization shows superior performance than the other competing methods. Our 
method has an EER of 10.11%, which is a 27% improvement over the baseline system. Further, 
CQCC and LFCC also show good performance. 

 
Table 3. Experimental Result of different features. (The best results on Eval set are highlighted in 

boldface, “-” represents no use of this technique). 

Features Post-processing 
Training on Train 

Testing on Dev 
(EER %) 

Training on Train 
Testing on Eval (EER %) 

CQCC [7] CMVN 9.24 13.92 
IMFCC [8] - 5.63 34.87 
HFCC [10] No 9.59 28.09 
LFCC [11] CMN 8.64 18.82 

SFCC (Ours) QCN 8.38 10.11 

 

4.2.2 Effect of Feature Normalization 
In our second experiment, we investigate the effect of feature normalization on detection 
performance. Normalization is one of the most effective methods in post-processing, mainly to 
eliminate channel effects. Specifically, we study four types of normalization: CMS, CMVN, 
CGN, and QCN. The performance of the normalization technology for replay spoof detection 
is summarized in Table 4.  

This Experiment demonstrates that our method achieves optimal performance which is 
highlighted in boldface in Table 4. It is obvious that there is a significant improvement in 
replay detection performance when using normalization techniques. The two normalization 
methods with stable performance are CMVN or QCN, respectively. One possible explanation 
is that both normalization techniques use the mean subtraction and variance normalization, 
which are effective methods to compensate for channel variability. 

In addition, for the same cepstrum feature, different normalization methods have different 
effects on detection performance. For CQCC, MFCC, and LFCC, the CMVN normalization 
method greatly improves the performance of the algorithm. Compared with HFCC and our 
features, QCN shows better performance. Therefore, when we detect replay attacks, how to 
extract effective features is important, and proper post-processing of features also benefit 
existing algorithms. Finally, as previously mentioned, the I-MFCC without any 
post-processing method may be overfitting. Our experiment shows that overfitting could be 
avoided by using normalization. 
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Table 4.  Experimental results of different post-processing (The best results on Eval set are 
highlighted in boldface, “-” represents no use of this technique). 

Feature Feature 
Normalization 

Training on Tra set 
Testing on Dev set 

(EER %) 

Training on Tra set 
Testing on Eval set 

(EER %) 

CQCC [7] 
(Baseline) 

-- 10.81 34.18 
CMN 9.62 15.22 

CMVN 9.24 13.92 
CGN 9.05 33.48 
QCN 10.59 15.48 

IMFCC [8] 

-- 5.63 34.87 
CMN 14.72 24.38 

CMVN 12.23 21.25 
CGN 22.68 31.10 
QCN 13.61 22.92 

HFCC [10] 

-- 9.61 28.40 
CMN 12.90 21.84 

CMVN 16.69 21.67 
CGN 20.87 24.16 
QCN 16.80 20.72 

LFCC [11] 

-- 10.73 27.01 
CMN 8.64 18.82 

CMVN 13.00 17.17 
CGN 11.75 25.60 
QCN 15.17 20.58 

SFCC (Ours) 

-- 9.18 40.15 
CMN 7.37 13.88 

CMVN 9.36 10.33 
CGN 11.63 24.02 
QCN 8.38 10.11 

 

4.2.3 Comparison of Modified Features 
In Section 4.2.2, for a fair comparison, the parameters for different features were set as 
recommended by the corresponding references. These parameter settings, obtained by the 
original author with extensive experiments, can be regarded as empirically optimal. Table 2 
shows that even compared with the results with those empirically optimal parameter settings, 
our algorithm still achieves the best performance.  

To further evaluate the effect of feature post-processing methods on the detection 
performance, we conducted an additional experiment (i.e., the third experiment). In this third 
experiment, all the features were tested under the same conditions (when applicable): the 
frame length and shift, window function, DFT or CQT bins and dimensionality are all the 
same. As shown below, feature post-processing techniques use QCN and CMVN with better 
performance in the second experiment. A summary of the modified features and their 
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parameters is shown in Table 5. Results for different modified features are summarized in 
Table 6.  
 

Table 5. Features and their parameters  

Feature 
Frame 
length 
/shift 

Window 
function 

DFT or 
CQT 
bins 

Coefficients 

Static Log-energy deltas 

CQCC 1728/864 Hanning 863 0 29c c−  √ 2∆ + ∆  
IMFCC 256/128 Hanning 256 0 29c c−  √ 2∆ + ∆  
HFCC 256/128 Hanning 256 0 29c c−  √ 2∆ + ∆  
LFCC 256/128 Hanning 256 0 29c c−  √ 2∆ + ∆  
SFCC 256/128 Hanning 256 0 29c c−  √ 2∆ + ∆  
   

Table 6.  Experimental results of modified features (‘Original ’ represents that the feature uses the 
parameters set by the reference, and the results are highlighted in bold). 

Modified 
Feature Post-processing 

Training on Tra set 
Testing on Dev set 

(EER %) 

Training on Tra set 
Testing on Eval set 

(EER %) 

CQCC  
Original 9.24 13.92 
CMVN 9.08 13.88 
QCN 10.99 15.22 

IMFCC  
Original 5.63 34.87 
CMVN 9.82 11.35 
QCN 10.71 12.38 

HFCC  
Original 9.59 28.09 
CMVN 14.27 18.85 
QCN 14.22 19.11 

LFCC  
Original 8.64 18.82 
CMVN 12.96 15.44 
QCN 13.88 17.82 

SFCC(Ours) 
CMVN 9.36 10.33 
QCN 8.38 10.11 

 
Note that, the results obtained from the Dev set are shown in Table 6, third column. One 

can see that the detection performance of the original features outperforms the modified 
features for almost all cases. The main reason is that the parameters settings for those original 
features are obtained by the original author with extensive experiments on DEV set. Therefore, 
compared to the modified features, the original features can achieve the best detection 
performance on the DEV set. However, on the Eval set containing more replay configurations, 
the modified features yield the lowest EER. Certainly, post-processing methods were 
beneficial for replay attack detection for most of the cases. Although other modified features 
have varying degrees of performance improvement, our proposed SFCC feature could achieve 
the best performance. 
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4.2.4 Effect of the Training set 
In the previous experiment, we only used Tra set as a training set to evaluate our proposed 
algorithm. One knows that the size of the training set is also an important factor affecting the 
performance of the algorithm. Therefore, in the last experiments, we used a combination of 
Tra set and Dev set for training and tested on Eval set. For the post-processing method of the 
feature, we only used QCN and CMVN that performed better in the above experiments. The 
results for different training set are shown in Fig. 3.  

It is clear that the performance of all algorithms using Tra set and Dev set as a training set 
can be improved. Therefore, we can conclude that the extension of the training set does 
improve the algorithm performance. This will encourage us to improve the detection 
performance from the perspective of data-augmentation. No matter what subset is used as the 
training set, our method is obviously superior to other methods. Our method yields lower 
EERs of 9.55% when using Tra and Dev as the training set. 
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Fig. 3. Comparison of the different training set 

5. Conclusion 
Replay attacks pose great security challenges to ASV systems. Many detection methods were 
developed to combat such attacks. In this work, we observe that the channel variability could 
harm detection accuracy of a detection method. In this work, a novel approach to replay 
attacks detection using low-frequency and high-frequency information of the spectrum is 
proposed. We first establish a mathematical model for replay speech and then propose a 
method to eliminate the influence of the channel. Finally, a novel feature is proposed. It is 
empirically found that using normalization as post-processing methods could improve 
detection performance. To evaluate the detection performance of our method and the effect of 
channel variability, we conduct experiments on the ASVspoof 2017 dataset. The results show 
that our approach outperforms other competing methods. Our results suggest that the 
normalization plays an indispensable role in the replay detection task.  
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