
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, Feb. 2020 724
Copyright ⓒ 2020 KSII

IP Design of Corrected Block TEA Cipher
with Variable-Length Message for Smart

IoT

Hyeopgoo Yeo1, Seungil Sonh1*, Mingoo Kang2
1 Division of Information & Telecommunications, Hanshin University

Osan-si, Gyeonggi-do, 18101 - Korea
[e-mail: hgyeo@hs.ac.kr]

[e-mail: saisonh@hs.ac.kr]
2 Dept. of IT Contents, Hanshin University

Osan-si, Gyeonggi-do, 18101 - Korea
 [e-mail: kangmg@ hs.ac.kr]

*Corresponding author:Seungil Sonh

Received August 14, 2019; revised October 17, 2019; accepted November 12, 2019;
 published February 29, 2020

Abstract

Corrected Block TEA(or XXTEA) is a block cipher designed to correct security weakness in
the original block TEA in 1998. In this paper, XXTEA cipher hardware which can encrypt or
decrypt between 64-bit and 256-bit messages using 128-bit master key is implemented.
Minimum message block size is 64-bit wide and maximal message block size is 256-bit wide.
The designed XXTEA can encrypt and decrypt variable-length message blocks which are
some arbitrary multiple of 32 bits in message block sizes. XXTEA core of this paper is
described using Verilog-HDL and downloaded on Vertex4. The operation frequency is
177MHz. The maximum throughput for 64-bit message blocks is 174Mbps and that of 256-bit
message blocks is 467Mbps. The cryptographic IP of this paper is applicable as security
module of the mobile areas such as smart card, internet banking, e-commerce and IoT.

Keywords: Corrected Block TEA(XXTEA), Symmetric Block Cipher, Encryption,
Decryption

This research was supported by a research grant from Hanshin Unersity.

http://doi.org/10.3837/tiis.2020.02.014 ISSN : 1976-7277

mailto:t.m.chen@swansea.ac.uk

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 725

1. Introduction

With present network system, it is possible to transmit various formats of data including
e-mail, picture, videos and voices[1]. In a world where the personal portable mobile devices
such as PDAs(Personal Data Assistant) and cell phones are evolving rapidly, information
security has become inarguably the most important issue than ever[3]. It is expected that the
development of IoT service will inflate the chance of potential security threats, as the IoT
service utilizes applications and heterogeneous network through smart devices or sensors[3,4].
The Symmetric cryptography system to be discussed is a system which the key for encryption
and decryption is identical. This system has been published in various systems such as
DES(Data Encryption Standard), IDEA(International Data Encryption Algorithm),
SKIPJACK, MISTY, Camellia, SEED, LEA(Lightweight Encryption Algorithm) and
AES(Advanced Encryption Standard) algorithm[5]. In particular, LEA(Lightweight
Encryption Algorithm) is the lightweight symetric block cipher proposed by NSRI(National
Security Research Institute) in 2013[3]. It has 128-bit message block size and 128, 192, or
256-bit master key sizes. Also it only uses ARX(modular Addition, bitwise Rotation, and
bitwise XOR) operations for 32-bit words as round operations. It is known that LEA is
optimized for 32-bit software platform and can operate fast in 32-bit platform.

Almost cipher algorithms adopt a fixed-length input message block, but the length of master
keys can be changed to enhance the security intensity for encrypting and decrypting the fixed
message block. On the other hand, XXTEA encryption algorithm design introduced in this
paper employs a 128-bit Master Key that embodies the encryption and decryption according to
the variable-length message inputs adopting minimum input of 64-bit to multiples of 32-bit,
which are 96/128/160/192/224/256–bit.

Table 1 shows the classification of the symmetric block ciphers according to a variation of
message block and master key sizes. In some block ciphers, such as DES, 3DES, and IDEA,
message block and key sizes are fixed. Also, in some block ciphers such as AES, Blowfish,
RC6, and MARS, key size can be changed . In XXTEA block cipher of this paper, only
message block size can be changed.

TEA was proposed by David Wheeler and Roger Needham of the Cambridge Computer
Laboratory in 1994. TEA uses a 128-bit key and 64-bit message block. Also it has a Feistel
structure of 64-round. It can also be vulnerable to a related-key attack against the block
cipher[6]. XTEA(eXtended TEA) is a symmetric block cipher proposed to correct the security
weakness in TEA by David Wheeler and Roger Needham in 1997. However, it is vulnerable to
a related-key differential attack[4] . Finally, XXTEA block cipher was released to compensate
for the security weakness of TEA and XTEA symmetric block ciphers[7]. Of course, it has
also been announced that security attacks on XXTEA cryptographic algorithms may be
partially vulnerable[8].

This paper consists as such introduction of XXTEA encryption algorithm, the design of
XXTEA encryption algorithm, verification and performance analysis of the designed XXTEA
encryption algorithm, and conclusion.

726 Hyeopgoo Yeo et al: IP Design of Corrected Block TEA Cipher with
Variable-Length Message for Smart IoT

Table 1. Classification of block ciphers according to a variation of message block and
master key sizes

Classification algorithm
Message

length(bits)
Key size

(bits)
of rounds # of S boxes

Algorithm
structure

Fixed
message

block and
key size

DES 64 56 16 8 Feistel
3-DES 64 168 48 8 Feistel

IDEA 64 128 8 -
Substitution

&
permutation

Variable key
size

AES 128 128,192,256 10 ~ 14 - Feistel
Blowfish 64 128-448 16 4 Feistel

RC6 128 128,192,256 20 - Feistel
Twofish 128 128,192,256 32 8 Feistel
MARS 126 128-448 32 1 Feistel

Variable
message size

XXTEA
64 – 256

Multiples of
32-bit

128 Under 32 - Feistel

2. Definition of XXTEA Encryption Algorithm[8]
XXTEA encryption algorithm, like most of the other block cypher algorithms, can be
distinguished into having two main functions: i) key scheduling block and ii) round block that
can randomize data. First, Fig. 1 shows Pseudo C code for encryption and decryption of
XXTEA cipher. The MX function, which is the core of data randomization of this algorithm,
consists of shift, xor and modulo addition. The y, z, sum, and round key are used as the inputs
of the MX function. Also the key used in the MX function is selected using the lower 2 bits of
the sub-round iteration counter p and the lower 2 bits of the 2 bits right shifted sum. q-value
defines number of rounds performed, as can be noticed from equation, (q=6+52/length), the
number of rounds of the length-value that informs of the number of 32-bit message inputs is a
variable. That is, the minimum value of q is 6 and the maximum value of q is when length is
the smallest, 2(=64-bit), which results in 32 rounds. Therefore, the XXTEA is able to perform
round operations between rounds 6 and 32. Also, 32-round is when the input message is 64-bit
and when the input message is 256-bit(32-bit*8), (q=6+52/8) results in 12 rounds operation in
total.

In case of encryption, the sum-value is used in the MX function employing the delta
constant as the initial value, and is added with the previous sum after the completion of the
round. In case of decryption, sum(=q*DELTA) is used as the initial value, and the sum
subtracted from DELTA-value is used in the MX function operation after the termination of
every round. The minimum value of each input message can be used every 32-bit from v[0] to
v[7] depending on the input bit mode. IF the input message is the minimum 64-bit, only v[0]
and v[1] are used. For 96-bit, v[0], v[1], v[2] is used and for 256-bit, v[0] to v[7] is used. One
round is variable depending on the number of valid message block v[i]. If i=2(64-bit), p=2 and
performs 2 partial rounds. If i=8(256-bit), p=8 and requires to perform 8 partial rounds to
conclude a round. Through this process, every v[i]-value that is valid after performing each
round gets updated. v[i]-value that updates when encrypting gets updated after being added
with the MX function value, and v[i]-value that updates when decrypting gets updated after

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 727

being subtracted by the MX function value. Y-value(in case of encryption) or z-value(in case
of decryption) that participates in the update of v[i]-value employs a nearby v-value of register
circulation system. In other words, when encrypting, v[0] and v[1] are used to update v[0],
v[1] and v[2] are used to update v[1], and when decrypting, v[n-1](n=32-bit input number) and
v[n-2] are used to update v[n-1], and v[n-2] and v[n-3] are used to update v[n-2]. Therefore, it
can be seen that in the process of performing the partial rounds for encryption and decryption,
the update sequence of the v-value is the exact opposite.

Also, as can be seen from Pseudo C code, y-value and z-value function as the opposite not
only for the varying sequences for the input message, but also when it is used for the MX
function input. In other words, in the calculation of MX function value, the arbitrary v-value is
used as y-value for encryption, but it is used as z-value for decryption. Inversely, if the v-value
is used as the z-value for encryption, it gets used as the y-value for decryption.

//MX function
#define MX ((z>>5)^(y<<2))+((y>>3)^(z<<4))) ̂((sum^y)+(key[(p&3)^e]^z))

//Encryption
void xxtea_encrypt(uint32_t *v, uint32_t length, uint32_t *key)
{
uint32_t z=v[length-1], y=v[0], sum=0, e;
uint32_t DELTA=0x9e3779b9;
uint32_t p, q ;
z=v[length-1];
q = 6 + 52/length;
while (q-- > 0) {
sum += DELTA;
e = (sum >> 2) & 3;
for (p=0; p<length-1; p++) y = v[p+1], z = v[p] += MX;
y = v[0];
z = v[length-1] += MX;

}
}
//Decryption
void xxtea_decrypt(uint32_t *v, uint32_t length, uint32_t *key)
{
uint32_t z, y=v[0], sum=0, e;
uint32_t DELTA=0x9e3779b9;
uint32_t p, q ;
q = 6 + 52/length;
sum = q*DELTA ;
while (sum != 0) {
e = (sum >> 2) & 3;
for (p=length-1; p>0; p--) z = v[p-1], y = v[p] -= MX;
z = v[length-1];
y = v[0] -= MX;
sum -= DELTA;
 }
}

Fig. 1. Pseudo code for encryption and decryption for XXTEA cipher

728 Hyeopgoo Yeo et al: IP Design of Corrected Block TEA Cipher with
Variable-Length Message for Smart IoT

3. IP design of the XXTEA cipher
Fig. 2 shows the XXTEA block cipher processor designed in this paper. As the length of the
master key is fixed to 128-bit, Key for encryption/decryption is saved when key buffer
incorporates key value over 4 times. Also, through bus, the setup for encryption/decryption
mode can be determined. The XXTEA encryption processor designed in this paper supports
encryption and decryption for message blocks varying lengths of multiple of 32-bit from
64-bit to 256-bit, and the control value that informs this is transmitted to num_of_words
register through an external bus. After the setup for control information and master key value
is completed, it sends data to message buffer to be encrypted/decrypted.

Fig. 2. The proposed XXTEA block cipher processor

Message buffer refers to 2/3/4/5/6/7/8 words signal which informs the minimum processing
word size, and if the stipulated amount of data is put into the message buffer, immediately
produces DataAvailable signal and notifies FSM(Finite State Machine). FSM activates
CryptoStart and saves messages from Message Buffer to v-register to perform round function.
After that, Key Scheduling Block and Round Block are synchronized. Then, Key Scheduling
Block provides partial round key-value to the Round Block, and if partial round is performed
up to the number of valid data’s word(32-bit) contained in the v-register, one round is
completed. Partial round update signal is subrnd_update. As after every round, sum-value

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 729

requires an update, FSM activates rnd_update signal and delivers it to the Key Scheduling
Block. When every defined round is completed, FSM activates EDResultUpdate signal and
delivers the final result value to Result Buffer. The final saved value is synchronized with
DataOutValid signal that alerts the validity of the printed value after receiving OutRegShiftEn
signal, then transmits 32-bit DataOut register bus externally as many as the number of valid
result data.

Next, key scheduling block that is a fundamental block of the XXTEA block cipher will be
explained. Fig. 3 shows the structure of key scheduling block designed in this paper.
In case of encryption, the initial sum-value becomes the constant Delta(=0x933779b9) value.
However, in case of decryption, the initial sum-value is programmed as [sum=number of
rounds x Delta], hence a multiplication machine is essential. However, in this paper, the result
value can be found when input message bit value is determined, and only 7 values are tested,
therefore the multiplication machine was terminated using mux as Fig. 3. After the initial
sum-value is determined, with the termination of each round, the result value of sum-value
added together with the Delta value is used as the new value for encryption, and for decryption,
the result value of sum value subtracted by delta value is used as the new sum-value, therefore
addition and reduction machine was used. The key value being employed in each round is used
as a selective address for selecting one out of the 4 key values, that were acquired by doing
XOR of partial 2-bit of p-value, that informs the number of partial round performance, p[1:0]
and sum[3:2]. Next, the design of round block will be explained. Fig. 4 represents the round
block designed in this paper.

Fig. 3. The key scheduling block for XXTEA cipher

730 Hyeopgoo Yeo et al: IP Design of Corrected Block TEA Cipher with
Variable-Length Message for Smart IoT

Fig. 4. The round block for XXTEA cipher

It was concluded from the pseudo C code analysis that in a round block, the input x and y of
MX function block are exchanged and used. Thus, the round block was designed using mux,
based on the encryption mode for y and z input to be exchanged. The 32-bit register
Intermediate_reg below Fig. 4 is a saved value of MX function result value added with
v-value(in case of encryption), or subtracted by v-value(in case of decryption). This register
value’s hardware structure is simplified at the next clock cycle, if used as y or z depending on
the mode. Also, the value of MX Function value and v-value added/subtracted together
corresponds to an updated v-value, and therefore is packed into different positions regarding
valid number of words; for 2 words(64-bit), it is stored in v1, for 3 words – v2, 8
words(256-bit) – v7. Moreover, vi registers connected in a Serial Shift Register are shifted to
the left direction for the next partial round operations.

Fig. 5 represents a hardware implementation of MX function block. MX function is called a
round function. MX function consists of shift, xor, and modulo addition. The y, z, sum, and
round keys are inputs to MX function. Finally, MX result is produced. The sum value of each
round is equal to previous sum+delta. p is the sub-round iteration counter. The value e is LSB
two bits of two-bit right shifted sum value for each round.

SubKey is a value provided by key scheduling block and employs same value while
performing one round. When the final round accomplishes, the final result
encryption/decryption value that is positioned at v register is transferred to the Output Buffer
and this value transfers 32-bit print data DataOut externally along with the DataOutValid

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 731

signal. The change to the hardware can be minimized by positioning v-register storing
sequence oppositely. That is, using 8-word message mode as an example, in case of encryption
the v-value is stored in v0, v1, …, v7 order from the left, and in case of decryption the v-value
is stored in v7, v6, …, v0 order. This is why the message buffer is designed to reorder data
sequence.

Fig. 5. Hardware implementation of MX function

Fig. 6. Message buffer with data reordering

In encryption mode, when data is stored in the Message Buffer of fig. 6, it is stored

sequentially from buffer0. However, for decryption mode, data is always entered from buffer0.
When new data is inserted to be saved, existing data in buffer0 is transferred to buffer1 and the

732 Hyeopgoo Yeo et al: IP Design of Corrected Block TEA Cipher with
Variable-Length Message for Smart IoT

new data is saved in buffer0. By doing so, when data is transferred from bufferi to vi, reordered
data can be transferred to a register that carries an identical i-value. In this paper, the design
was completed in a way that minimum hardware could be used.

3. Verification and Performance Analysis of Designed XXTEA Cipher
For the verification of the designed XXTEA encryption algorithm, the test case from
reference[10] was used. Using Verilog HDL, XXTEA module was designed and the
verification was processed by comparing suggested input and result value of the test case
corresponds to the input and result values of the designed module. The XXTEA cipher
algorithm designed in this paper employs 128-bit length of fixed master key and plain text or
cipher text, the input message, can have varying lengths of the multiples of 32-bit from 64-bit,
that is 64-bit, 96-bit, 128-bit, 160-bit, 192-bit, 224-bit, and 256-bit. The design tool used in this
paper is Xilinx ISE[14,15].

This paper will only explain the simulation results for 96-bit input message. First, Fig. 7
employed “ffffffff”, “ffffffff”, “ffffffff”, “ffffffff” for 128-bit Master Key. Plain text, the input
for designed XXTEA cipher, employed “a8137c15”, “575eba50”, “91776d30”. It was
confirmed that encryption using the following inputs yielded final cipher “ef1c60b2”,
“72b778b0”, “6abaccab”, which matched the proposed values from the test case. The total
time taken for yielding the result value was 70-clock cycle.

Fig. 7. Encryption simulation of 96-bit plain text for XXTEA cipher

Fig. 8 shows the decryption simulation of 96-bit cipher text for XXTEA cipher algorithm.

Similar to Fig. 7, under the identical master key setting excluding the decryption mode, when

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 733

decryption is processed using cipher text as an input, like Fig. 8, it can be retrieved back to a
plain text.

Fig. 8. Decryption simulation of 96-bit cipher text for XXTEA cipher

Fig. 9. Encryption simulation of 256-bit cipher text for XXTEA cipher

734 Hyeopgoo Yeo et al: IP Design of Corrected Block TEA Cipher with
Variable-Length Message for Smart IoT

In this paper, the designed XXTEA cipher processor supports encryption and decryption for
successive messages. However, depending on the message block sizes, the execution cycles
are variable. The execution cycle for 96-bit and 256-bit has already been referred. 65-clock
cycle is taken for 64-bit message, 69-clock cycle for 128-bit message, 85-clock cycle for
192-bit message.

Next, the encryption/decryption simulation of 256-bit message input will be explained. Fig.
9 employed “08040201”, “80402010”, “f8fcfeff”, “80c0e0f0” for master key. Employing
“c9f39adb”, “0ca3366e”, “91776d30”, “7a5bd7f4”, “0ea4514b”, “e559879d”, “0bc4e381”,
“36441b34”, as the plain text message input, and carrying out encryption, the final cipher is
“e0b6f15e”, “7b22a210”, “4b3737a3”, “c5ffbe59”, “05033526”, “e51fb4547”, “1e640030”,
“07d17d2c”, corresponding to the values suggested at the test case. The total time taken for
yielding the result was 97 Clock cycles.

Fig. 10 is a decryption simulation of 256-bit cipher text for XXTEA cipher, which the
decryption mode is activated and uses the same master key as Fig. 9 as an input. It shows that
when the cipher text is entered, the original plain text can be obtained through the activation of
decryption mode.

Fig. 10. Decryption simulation of 256-bit cipher text for XXTEA cipher

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 735

Table 2 shows the performance analysis of lighweight cryptographic algorithms.
XTEA[11] was implemented using Samsung 0.35um technology. It has a maximum
throughput of 125Mbps. HIGHT[12] was proposed in South Korea in 2005. HIGHT is a
lightweight cipher with 64-bit block length and 128-bit key length. It has a maximum
throughput of 271Mbps. The XXTEA processor designed in this paper has features that it can
process different lengths of input message blocks, hold an operation frequency of 177MHz at
Vertex4, the maximum throughput for 64-bit message input is 174Mbps, and finally for
256-bit message input, it shows a performance of 467Mbps.

Table 2. Performance analysis of lightweight cryptographic alogorithms
Items Our XXTEA XTEA[11] HIGHT[12]

Encryption/
Decryption

Both supported

I/O data bus 32-bit 64-bit 32-bit

Message size
64, 96, 128, 160, 192, 224,

256-bit
64-bit 64-bit

key 128-bit

Operation frequency 177MHz 125MHz 144MHz

of Slices 1618 Samsung 0.35um 1122

Block ROM No 2300 gates 4 256x8-bit ROMs

Clock cycles of
encryption/decryption
 for a message block

65-clock @64-bit message
97-clock @ 256-bit

message
[Variable clock cycles

according to message sizes]

32-clock 36-clock

Maximum
Throughput

174Mbps @64-bit message
block

467Mbps/sec @256-bit
message block

125Mbps 271Mbps

4. Conclusions
This paper designed an XXTEA cipher processor that uses a 128-bit fixed master key and can
encrypt or decrypt varying message lengths for the multiples of 32-bit. It aimed to minimize
the usage of hardware resources by suggesting an efficient hardware structure through using a
message buffer that can relocate the data or using a multiplexer without the multiplier required
for the initial sum value. The maximum data processing rate of the designed XXTEA cipher
algorithm for 64-bit input message is 174Mbps, for 256-bit input message is 467Mbps. It is
expected that the XXTEA cipher processor designed in this paper can be used as a security
module for many areas including smart card, internet banking, e-commerce and IoT(Internet
of Things).

736 Hyeopgoo Yeo et al: IP Design of Corrected Block TEA Cipher with
Variable-Length Message for Smart IoT

References
[1] Satish K. Vishwakarma and Shivam Khare, "XXTEA An Optimized Encryption Design with High

Feedback Substitution Box Architecture," International Journal of Modern Engineering &
Management Research, Vol.2, Issue 3, pp.12-16, Sep. 2014. Article (CrossRef Link).

[2] Issam Damaj, Samer Hamade, and Hassan Diab, “Efficient Tiny Hardware Cipher under Verilog,”
in Proc. of the 2008 High Performance Computing & Simulation Conference, 2008.
Article (CrossRef Link).

[3] Mi-Ji Sung, Kyung-Wook Shin, “An Efficient Hardware Implementation of Lightweight Block
Cipher LEA-128/192/256 for IoT Security Applications,” JKIICE, Vol.19, No. 7, pp.1608-1616,
Jul. 2015. Article (CrossRef Link).

[4] Shweta Gaba, Iti Aggarwal, and Sujata Pandey, “Design of Efficient XTEA Using Verilog,”
International Journal of Scientific and Research Publications, Vol. 2, Issue 6, pp.1-5, June 2012.
Article (CrossRef Link).

[5] Seungil Sonh, Byeongyoon Choi, Mingoo Kang, “Technology Trend of Cipher Chips,” KSII,
Vol.1, No.2, pp.1491-1500, Oct. 2001..

[6] J. Kelsey et al., "Related-key Cryptanalysis of 3-way, Biham-DES, cast, DES-XNew DES, RC2,
and TEA," in Proc. of 1st International Conference on Information and Communication Security,
pp.233-246, 1997. Article (CrossRef Link).

[7] David J. Wheeler and Roger M. Needham, "Correction to XTEA,"
http://www.movable-type.co.uk/scripts/xxtea.pdf, Oct. 1998. Article (CrossRef Link).

[8] Ion Sima, et al., "XXTEA, an Alternative Replacement of KASUMI Cipher Algorithm in A5/3
GSM, F8, F8 UMTS Data Security Functions," in Proc. of 9th International Conference on
Communications(IEEE), pp.323-326, 2012. Article (CrossRef Link).

[9] Elias Yarrokov, "Cryptanalysis of XXTEA," International Association for Cryptologic Research,
pp.1-6, May 2010. Article (CrossRef Link).

[10] http://read.pudn.com/downloads187/ sourcecode/windows/other/877059/xxtea.cpp__.htm
Article (CrossRef Link).

[11] Joohong Kim, “Hardware Design and Performance Evaluation of a Lightweight Cryptographic
Algorithm for RFID/USN,” NDSL,. 2006. Article (CrossRef Link).

[12] Seungil Sonh, “Design of Encryption/Decryption Core for Block Cipher HIGHT,” JKIICE, vol. 16,
no. 4, pp. 778-784, Apr. 2012. Article (CrossRef Link).

[13] Seungil Sonh, Hyeopgoo Yeo, “A Design of XXTEA for Variable-Length Message Block
Cipher,” in Proc. of APIC-IST 2019, pp. 115-116, Jun. 2019. Article (CrossRef Link).

[14] Tutorial: Xilinx ISE 14.4 and Digilent Nexys 3.
Article (CrossRef Link).

[15] Hoang Nguyen, “Xilinx ISE Simulator Tutorial V14.4,” pp. 1-38, Jun. 2015.
Article (CrossRef Link).

http://ijmemr.org/Publication/V2I3/IJMEMR-V2I3-003.pdf
https://pdfs.semanticscholar.org/5199/66452a092ba2d40b724d31a59f0fe323cfec.pdf
http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06390691&language=ko_KR
http://www.ijsrp.org/research_paper_jun2012/ijsrp-June-2012-18.pdf
https://www.schneier.com/academic/paperfiles/paper-relatedkey.pdf
http://www.movable-type.co.uk/scripts/xxtea.pdf
https://ieeexplore.ieee.org/document/6262617
http://d1.amobbs.com/bbs_upload782111/files_33/ourdev_582838F1ICM8.pdf
http://read.pudn.com/downloads187/sourcecode/windows/other/877059/xxtea.cpp__.htm
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=DIKO0010509845
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO201215239621159&SITE=CLICK
http://apicist.org/2019/
https://my.ece.utah.edu/%7Ekalla/ECE3700/ISE-Tutorial_Nexy3_Full.pdf
http://home.deib.polimi.it/brandole/prlcr/tutorial-xilinx.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 737

Hyeopgoo Yeo received his B.S. and M.S. degrees in electronic engineering
from Yonsei University in Seoul, South Korea, in 1991 and 1993, respectively. He
also received his M.S. and Ph.D. degrees in electrical and computer engineering
from the University of Florida in Gainesville, FL, USA, in 2003 and 2007,
respectively. From 1993 to 1999, he worked as a design engineer at Samsung
Electronics Co., Ltd, where he performed ASIC cell library and high-speed digital
I/O design using various CMOS technologies for gate-array and standard cell. In
2008, Dr. Yeo joined the hardware R&D group at Samsung, where he was
involved with mobile hardware design for wireless communications. In March
2009, he joined Hanshin University and he is currently an Assistant Professor. His
research interests include RF/analog circuit.

SeungIl Sonh is a professor in the Division of Information and
Telecommunications at Hanshin University, Osan South Korea from 2002. He has
received the B.S., M.S., and Ph.D. degrees from Yonsei University, Seoul, Korea
all in Electronic Engineering in 1989, 1991 and 1998, respectively. Also He
served as a visiting professor at the Georgia Institute of Technology in the U.S. in
2015. His research interests include cryptographic algorithm, IoT, and FPGA
design.

MinGoo Kang is a professor in the Dept. of IT Contents at Hanshin University,
Osan South Korea from 2000. He has received the B.S., M.S., and Ph.D. degrees
from Yonsei University, Seoul, Korea all in Electronic Engineering in 1986, 1989
and 1994, respectively. He was a research engineer at Samsung Electronics from
1985 to 1997. His research interests include wireless communication algorithm,
smart mobile IoT devices, and blockchain security. He is a chair of KSII(Korean
Society of Internet Information), also served ICONI 2014, and APIC-IST 2017
hosted by KSII as the conference chair.

