
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, Mar. 2020 1249
Copyright ⓒ 2020 KSII

Trapdoor Digital Shredder: A New
Technique for Improved Data Security

without Cryptographic Encryption

Taek-Young Youn1 and Nam-Su Jho1*
1 Electronics and Telecommunications Research Institute

138 Gajeongno, Yuseong-gu, Daejeon, Korea
[e-mail: taekyoung, nsjho@etri.re.kr]
*Corresponding author: Nam-Su Jho

Received January 22, 2019; revised April 2, 2019; accepted July 28, 2019;

published March 31, 2020

Abstract

Along with the increase of the importance of information used in practice, adversaries tried to
take valuable information in diverse ways. The simple and fundamental solution is to encrypt
the whole data. Since the cost of encryption is increasing along with the size of data, the cost
for securing the data is a burden to a system where the size of the data is not small. For the
reason, in some applications where huge data are used for service, service providers do not use
any encryption scheme for higher security, which could be a source of trouble. In this work,
we introduce a new type of data securing technique named Trapdoor Digital Shredder(TDS)
which disintegrates a data to multiple pieces to make it hard to re-construct the original data
except the owner of the file who holds some secret keys. The main contribution of the
technique is to increase the difficulty in obtaining private information even if an adversary
obtains some shredded pieces. To prove the security of our scheme, we first introduce a new
security model so called IND-CDA to examine the indistinguishability of shredded pieces.
Then, we show that our scheme is secure under IND-CDA model, which implies that an
adversary cannot distinguish a subset of shreds of a file from a set of random shreds.

Keywords: Trapdoor digital shredder, Data privacy, Encryption

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant
funded by the Korea government(MSIT) (No.2017-0-00213, Development of Cyber Self Mutation Technologies
for Proactive Cyber Defence)

http://doi.org/10.3837/tiis.2020.03.018 ISSN : 1976-7277

1250 Youn et al.: A New Technique for Improved Data Security without Cryptographic Encryption

1. Introduction

In these days, to protect someone's data is one of fundamental requirements for many
information services. So, various techniques have been introduced to protect significant
information from adversarial trials throughout all steps of data managements including
publication [14], processing of personal data [13,15], and data storing [2,6,10]. However, the
security against an adversary who obtain partial stored data in a remote storage was not
considered in depth since we can counter the adversary by preventing the adversary from
accessing to the target data or by using well-known encryption schemes such as AES [1] to
encrypt data as in [2]. The former has some demerits in the sense that access-control based
countermeasures are broken in various ways. Hence, until now, it is widely believed that the
use of encryption schemes is the most reliable way for securing data since we can prevent the
adversary from extracting meaningful information from encrypted data due to the security of
the underlying encryption scheme.

We already have many standardized tools for data encryption. However, many users do not
use the schemes to encrypt their data due to the following reasons. The first reason is the cost
of operation. The cost of encryption is not a burden when the volume of data is small, but we
cannot ignore the cost of encryption when the volume of data is huge. Since the volume of data
is huge in these days and the size of files is increasing very fast, to encrypting all data is a
burden for some users. To overcome the performance issue, many researchers have tried to
improve the efficiency of standard encryption schemes [3]. In these days, AES implimentation
technique for both SW and HW are almost optimized along with recent researches, but the cost
of encryption scheme is still a burden which can not be ignored. So, it is desirable to design a
technique that can pretect data privacy with lower cost than AES. Another reason is the
inconvenience caused by the use of encryption schemes. It is not desirable to use encryption
schemes for some data which are frequently modified since the owner of a file should decrypt
encrypted file and re-encrypt the file whenever he wants to modify the file.

On the other hands, many researches have tried to improve the data privacy by adopting
multiple storage servers and distributing a file to the servers [2,6,10]. Though existing
techniques can improve the security of stored data using distributed storage servers, they still
require costly operations to encrypt stored data using encryption schemes [2] or to generate
encoded file using cryptographic tools such as secret sharing or information dispersal
algorithm [6,10]. Before to discuss the main idea of this paper, we want to emphasis that the
goal of this work is not support the same security that can be supported by conventional
security algorithms such as DES and AES. Instead of giving the same security, this work is
made to support sufficient security without using traditional security algorithms which require
costly operation for large files.

Basically, we use two ideas to design our scheme. The first one is the shredding of the
target data and the second idea is the use of distributed storage servers for shredded data. Until
now, various techniques have been studied to improve the security of stored data. However,
among two basic features of our scheme, the first idea is not widely considered for securing
data since it is believed that the approach cannot prevent an adversary from obtaining
meaningful information from shreds. In practice, it may be possible to re-construct the original
file from the shreds if the adversary has all of shreds. However, it can be a good candidate for
securing data by combining the first idea with the second idea. In other words, we can improve
the security of a file by shredding the file and storing shreds in a distributed way since an

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020 1251

adversary who breaks a storage server only can obtain a part of the file. However, the use of
distributed storage servers for higher security is already widely considered in the literature. In
this viewpoint, a distinguishing characteristic of our construction is the randomness of data
stored in storage servers. Specifically, in our construction, we randomize a subset of shreds
which will be stored in the same storage so that an adversary can obtain a random shreds of a
file even if the adversary succeeds in breaking the storage server. In the adversary's viewpoint,
a shred of a random position of the original file does not give meaningful information. One
more point that should be considered is the size of a shred. To prevent the adversary can obtain
any meaning information from a shred, the size of a shred is determined so that any
meaningful information cannot be expressed in a shred. Based on the above described idea, in
this paper, we design a new technique to improve data security without cryptographic
encryption.

The contributions of this paper can be summarized as following:

- Novel approach for securing data. We propose a new and novel method which can

improve the security of data which are stored in a remote storage.

- Practical solution. Our solution does not require costly cryptographic operations, and
thus we can apply our technique to applications where huge data should be securely
and efficiently managed.

The remainder of this paper is organized as follows. In Section 2, we describe security

models for our construction. In Section 3, we describe our technique with details, and its
security and performance are discussed in Section 4. In chapter 5, we conclude this paper.

2. Security Models
In this section, we will discuss some security-related topics. Then, we also give formal
security definition for our proposed technique.

2.1 Attack Environment
Recall that the trapdoor digital shredding technique is designed to guarantee the security of
data which are stored in remote storage servers. Specifically, we consider the environment that
there are multiple storage servers which operate independently and data are distributed to the
servers. Therefore, an adversary can access limited partial data even if some of the servers
collude with an adversary. Here, we ignore the scenario that the adversary obtains entire data
by colluding all of storage servers at the same time. To prevent the adversary, we require more
complicated cryptographic methods, usually impractical.

2.2 Goal of Attack
The goal of an adversary is obtaining meaningful information from stored data. Remind that
we assume that an adversary can access one or more storage servers at the same time.
Therefore, the goal of an adversary can be considered as obtaining meaningful information

1252 Youn et al.: A New Technique for Improved Data Security without Cryptographic Encryption

from partial data. If a server stores data containing long consecutive bit-strings of the original
file, then it is too easy for the adversary to achieve the goal. Note that the number of storage
servers is limited by physical constraints so that it is hard to reduce the size of stored data in
each server. Instead, we need strategies for constructing partial data which are large enough
but contains no long consecutive bit-string of the original file.

2.3 Formal Security Definition
For describing formal security definition, we define a function named trapdoor digital
shredding (TDS) algorithm. TDS algorithm shreds the input file F into small data fragments
with pre-assigned bit-length ℓ. We will denote the small data fragment as shred. After
shredding, TDS divides shreds into N sets, where each set composes a chunk. Formally,

TDS(F, ℓ, N, tk) = {CK1, CK2, …, CKN},

where tk means trapdoor secret key which is required to re-construct the original file from the
chunks.

To define the security model for TDS, we consider the following game. In the game, an
adversary gets chunks as input. To simplify the security model, we assume that an adversary
can access one server, i.e. one chunk. Note that the security model can be extended for an
adversary who can access to multiple chunks easily.

Defining the goal of adversary in the game is somewhat complicated. Note that if the goal

of the adversary is distinguishing a given chunk from random string with the same size, it can
be a good candidate for reflecting the security of TDS. However, winning of the game highly
depends on the selection of the file F. For example, if a file of which all bits are valued with ‘0’
is selected as input for TDS, then it is too easy to distinguish the chunk from a random string.
Therefore, we need a modified definition to mitigate the effects of single file's characteristic.

Before more discussions, we define a notion dictionary for a given file F as a set of all

shreds of F, including duplications.

Dic(F) = {set of all shreds of F}.

Now we can consider the goal of an adversary as finding the original file for a given chunk,
where two files with the same dictionary are also given. The second file is made by shuffling
the original file to contain no long consecutive bit-string. Note that if there is an adversary who
can obtain a sufficiently long consecutive bit-string of the original file from a given chunk
with high probability, then it is easy for the adversary to distinguish the two files. Therefore,
proving the nonexistence of the adversary, who can win the game with high probability,
implies the security of TDS technique.

Formally, we define IND-CDA(indistinguishability against chosen dictionary attack)
games as followings. In the game, A selects two files {F0, F1} such that

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020 1253

Dic(F0)= Dic(F1)

and sends the files to B. B chooses i from 0 or 1, and runs TDS(Fi, ℓ, N, tk) with randomly
selected tk. The adversary A chooses j, the index of a corrupted chunk. Then B sends CKj to A.
Finally, A guesses the B's choice i, viewing F0, F1, and CKj. If A's guess is correct, then the
adversary wins the game.

Definition(IND-CDA security) A TDS system satisfies IND-CDA security if there is no
adversary who can win the IND-CDA game with non-negligible probability.

3. Our Construction
In this section, we will describe our construction. Let F be the file to store and N be the number
of distributed storage servers. Recall that the goal of this work is to design a secure and
practical way to distribute the file F to N servers so that an adversary cannot extract
meaningful information from a chunk stored in a corrupted server. Simply, our scheme
consists of two phases: the chunk generating phase and the data distribution phase. Since we
are not interested in the way of distributing each chunk, the main goal of this work is to give a
secure and efficient way to generate chunks for the file F. Hence, from now, we will describe
the way to generate data chunk for digital shredding technique.

3.1 Basic Idea
Here we describe our basic idea before giving concrete scheme. We expect that the original
file will be disintegrated into tiny shreds and re-constructed as chunks. Here, we need that each
chunk should not reveal any meaningful information regarding the original file. Note that
since we are not considering about applying any cryptographic method like encryption system,
the chunks are just collections of tiny shreds without any modification. In other words, a shred
in a chunk has exactly the same value to the corresponding shred in the original file.

Therefore, in our construction two points are important for security. The first point is the
size of a shred since the size influences on the hardness of obtaining meaningful information
from a single shred. Intuitively, it is hard to extract meaningful information from small shred
than from larger one. Extremely, a shred has no information if the size of the shred is 1-bit.
However, smaller shreds are hard to handle since the number of shreds is increased for smaller
shreds. The second point for secure digital shredding is randomness of the chunk construction.
If an adversary can correctly guess the original positions of consecutive shreds, he can obtain
meaningful information from the shreds without regarding the size of each shred. Fortunately,
it is assumed that the adversary can access to limited number of chunks so that it is hard to
obtain a large fragment of the original file. However, the adversary still can guess some partial
information of the file F if the position of the shreds can be determined. It is why we need to
randomize the positions of shreds. The basic procedure for our scheme can be seen in Fig. 2.

1254 Youn et al.: A New Technique for Improved Data Security without Cryptographic Encryption

3.2 Trapdoor Digital Shredding System
In this section, we describe the first trapdoor digital shredding system. In the system, a client
and a set of storage servers are communicate to upload and download data. For the explanation,
let Clt be the client who wants to store a file F to N servers {Srv1, Srv2, …, SrvN}. In the
following description, we didn't give any concrete way to identify a file or the way to manage
stored file since they are not included in the scope of this work. The trapdoor digital shredding
system works as follows.

- Upload. To upload the file F, the client Clt generates an identifier idF for the file and runs

the chunk generation function, C-Gen(), to generates chunks. The function runs mainly in
two steps;

1. shred target file into tiny shreds; and
2. construct random subsets of shreds.

The function requires four inputs, the target file to be shredded, the size of shreds, the
number of storage servers, and the trapdoor key. Note that, the trapdoor key will be used
in chunk generation and re-construction of the original file from chunks. It should be hard
to re-construct the original file without the trapdoor key, and it is one of fundamental
security requirements. The chunk generation function can be written as a formula as
following:

{CK1, CK2, …, CKN} = C-Gen(F, ℓ, N, tk)

where tk is the trapdoor key and ℓ is the size of a shred which implies that |CKi| = ℓ for all
i. Then the client sends CKi to Srvi for all i = 1, …, N, and keeps the trapdoor key tk
securely. Note that it is not clear yet how does the digital shredding function C-Gen()
works since we didn't give concrete description. We will give concrete algorithms for the
function with more discussions in Section 3.3.

Fig. 1. Basic idea of our construction

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020 1255

- Download. To retrieve the file F, the client downloads CKi from Srvi for all i = 1, …, N,

and runs file retrieval function, F-Ret() with the private trapdoor key tk. To re-construct
the original file, the client has to rearrange all shreds in N chunks using the trapdoor key.
The file retrieval function can be written as a formula as following:

F = F-Ret(CK1, …, CKN, tk).

Concrete description for the re-construction procedure will be given in Section 3.4. Note
that it is possible to design F-Ret to re-construct the original file from partial collection of
N chunks (if necessary) by applying error correcting code.

The proposed system composed with two functions as explained in the above, and the

C-Gen function, which shreds the file and constructs chunks, is a core algorithm for the system.
At glance, it resembles a paper shredding machine in the sense that a paper is shredded into
tiny shreds. The purpose of the shredding machine is making it impossible to rearrange the
original paper from a dump of shreds. We also make the rearrangement harder using multiple
dumps. This approach is main difference between our scheme and ordinary data distribution
techniques, where a file is simply divided into multiple chunks and stored in a distributed way.
Note that, in ordinary data distribution techniques, a chunk is usually a large loaf of the
original file.

3.3 How Implement Random Subset Selection
As we explained in the above, the design of the chunk generation function C-Gen() is the most
important part for the proposed system. Here, we give a concrete example of the function.
Recall that the function is executed when a client Clt uploads a file F. The first step of C-Gen
is to generate an encoded file EF from the file F. To encode the file, Clt chooses a random
trapdoor key tk and generates len1-bit random string which can be represented as following:

n1 || j1 || n2 || j2 || … || nk || jk = prng(len1, tk),

where prng(len, seed) is a pseudo random function which returns len-bit random number
based on seed. In the above equation, ni and ji mean the i-th noise-value and noise-interval,
respectively. For the efficiency of noise management, it is better to use word-sized noise-value
in practice. However, we use random-sized noise-value to randomize the position of each
shred. To support random-sized noises, we will use some part of ni to decide the size of the i-th
noise, but we use the above notation in the current form for convenience. The noises are
inserted in the file F as follows. The first noise n1 is inserted between the j1-th bit and the
(j1+1)-th bit of F. The second noise n2 is inserted between the (j1+j2)-th bit and the (j1+j2+1)-th
bit of F, which means that the interval from the first noise to the second noise is j2 bits.
Similarly, the position of the i-th noise ni is ji-bits far from the end of the (i-1)-th noise. In Fig.
2, we give an example for the noise insertion procedure for k = 5.

1256 Youn et al.: A New Technique for Improved Data Security without Cryptographic Encryption

Fig. 2. Data processing procedure (noise insertion)

As seen in the Fig. 2 random noises are distributed in F at the random positions. Let EF be
the encoded file with random noises. The next step is to shred the encoded file. Since we
assumed that there are N servers, the file EF is divided into tN shreds for an integer t. If ℓEF is
the length of the file EF, we need ℓEF = ℓtN. Remind that the size of each shred is ℓ. Therefore,
we append redundant bits to EF if necessary. In this paper, we assume that ℓEF = ℓtN for
convenience. Then the encoded file EF is shredded into tN shreds. Let Pi be the i-th shred of
EF. We construct the N subsets as Sj = {Pi | i = j mod N}. At this time, we have N subsets of the
encoded file EF, and each subset is a collection of random shreds of the original file F. Note
that, without noises, positions of shreds in Sj can be easily predicted.

The last step of chunk generation is shuffling each Sj randomly. Note that each Sj consists of
t elements. Therefore, we explain the shuffling technique with Sj = {P1

(j), P2
(j), …, Pt

(j)}. First,
we need to compute

p[1] || p[2] || … || p[t] = prng(len2, tk || j),

where each p[i] is an integer with 1 ≤ p[i] ≤ t. For k = 1 to t, exchange Pk

(j) with Pp[k]
(j),

sequentially. Then, Clt sends j-th chunk CKj, the concatenation of all shreds in Sj, to the j-th
server.

3.4 File Retrieval
F-Ret function runs in reverse way of C-Gen function. In other words, F-Ret re-shuffles each
chunk, gathers the chunks in one encoded file, and removes random noises sequentially to
re-construct the original file. Note that only the Clt who keeps the random trapdoor key tk can
generate the same random strings of the steps in the chunk generation. Therefore, F-Ret
function can be runned correctly by the Clt only.

4. Analysis
In this section, we analyze the security and performance of our scheme.

4.1 Security
We claim that the proposed TDS algorithm is IND-CDA secure.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020 1257

To prove the above claim, remind the game described in the section 2.3. In the game, A can
be considered as a pair of two polynomial-time algorithms, (A1, A2). A1 generates two files {F0,
F1} that hold the relation Dic(F0) = Dic(F1), and selects an positive integer j less than N. Then
B randomly chooses i and tk to run C-Gen(Fi, ℓ, N, tk)= {CK1, CK2, …, CKN}. Then a chunk
CKj is given to A2 as a challenge. If the computed value i' = A2(F0, F1, CKj) is the same to i,
then A wins the game. The advantage of A can be formalized as follows

ADVA = | Pr[i' = i | (F0, F1, j)  A1, (i, tk)  B,
 {CK1, …, CKN}  C-Gen(Fi, ℓ, N, tk), i'  A2(F0, F1, CKj)] – 1/2 |.

Here, we omitted considerations about extra C-Gen and F-Ret queries before or after the B

generates the challenge. Note that each C-Gen or F-Ret algorithm runs using randomly
selected tk. Therefore, we can easily deduce that there is no influence of existence of extra
queries to the adversary's advantage from the property of the pseudo-random generators.

To prove the above claim, we first assume that there exists A = (A1, A2) with non-negligible
advantage. Then we will show that using A one can easily distinguish a pair of two
pseudorandom-strings which are generated from related inputs, from a pair of two
pseudorandom-strings from independent inputs.

To formalize this proof, we need one more participant, C, who generates PRNG-challenges
(S1, S2) such that |S1| = len1 and |S2| = len2. In the PRNG-challenges, an integer j is given to C
and C randomly chooses an integer iC from 0 or 1. If iC = 0, then C generates a pair (prng(len1,
tk), prng(len2, tk || j)) as PRNG-challenge, where tk is random seed selected by C. Otherwise,
C generates a PRNG-chanllenges as (prng(len1, rs1), prng(len2, rs2)) from randomly selected
two random seeds rs1 and rs2. Note that from the property of pseudorandom generators it is
hard for any polynomial-time algorithm to guess C's choice from the PRNG-challenge with
non-negligible advantage.

Finally, we state that if A's advantage is non-negligible then B can find correct answer for
the PRNG-challenge with non-negligible advantage.

For the first step, B starts the IND-CDA game with A. A1 sends (F0, F1, j) to B. Then B
sends j to C and receives PRNG-challenge (S1, S2). Next, B chooses i and simulates C-Gen(Fi,
ℓ, N, tk). However, in this simulation B using S1, S2 as outputs of prng(len1, tk) and prng(len2,
tk || j) in the C-Gen function, respectively. B sends CKj to the A as a challenge of the
IND-CDA game. If A's guess i' is the same to i, then B answers ‘0’ to C. Otherwise B answers
‘1’.

Therefore, the advantage of A is negligible from the property of the pseudo-random number
generators. It implies that the proposed algorithm is IND-CDA secure.

4.2 Performance
To measure the performance of the proposed technique, we count the number of additional
operations compared with the naive approach where the target data to be stored is simply
divided into N chunks and stored to distributed storage servers without any additional data

1258 Youn et al.: A New Technique for Improved Data Security without Cryptographic Encryption

processing. As explained in Section 3.3, in our scheme, we need to perform the following
additional operations:

- Generate N+1 random sequences.
- Generate the encoded file using random noises.
- Shatter the encoded file into shreds.
- Generate chunks by combining some shreds.
- Shuffle in each chuck.

The first operation requires N+1 pseudo-random function evaluations. Note that the size of

random streams is much smaller than the size of the original file, and thus the cost for the first
operation is not a burden. The encoded file is computed by inserting noise-values in the
original file. It can be simply implemented by bitwise-shift and copy operations. The third and
the fourth steps also can be easily implemented using iterative copy operations of small size bit
streams. Note that, in the implementation, the last operation (shuffling in each chunk) is not
considered since the operation was included for the simplicity of theoretic proof. Even if the
operation is included, the last operation can be easily implementable as the other operations
without large burden or it can be entrusted to storage servers after chunks are distributed.

We implement our scheme and compare its performance with AES encryption algorithm.
For fair comparison, we use a well-known AES code in OpenSSL Ver.1.0.2. We use 10MB
data and assume 5 servers. Specifically, the size of shreds is 32-bits, the ratio of random noise
is pre-set as 10%. As shown in Table 1, the cost of encoding(shreding) and decoding are
greatly reduced compared with AES encryption. Even though AES code is highly optimized
differently from the proposed scheme, our scheme is efficient than AES. Two operations are
about 3 times faster than AES encryption in the current implementation. With further
optimization, it is expected that the performance of the proposed scheme will highly
outperform the advanced encryption standard AES.

Table 1. Comparison
 The proposed scheme AES (CBC mode)

Operation Shreding Decoding Encryption
Time 0.026499 sec 0.028725 sec 0.088902 sec

In Table 2, we test the effect of the size of shreds. Intuitively, we can expect that the cost of
encoding will decrease since the number of unit operations is decreasing for large shreds. The
intuitive idea regarding the cost of encoding can be verified in Table 2. As seen in the table,
the cost of encoding is decreasing for larger shreds, but the effect of changing the size of
shreds is not crucial for the total efficiency.

Table 2. Encoding time for various shred sizes
Shred size 16 bits 32 bits 64 bits 128 bits 256 bits

Time 0.028518
sec

0.026419
sec

0.025739
sec

0.024886
sec

0.024820
sec

One of performance issue is the number of distributed storages. In Table 3, we tested the cost
of encoding for various number of servers. As a result of simulation, we can see that the cost
does not highly influenced by the number of server. Note that the number of servers also
influences on the security of the proposed system since an adversary may try to obtain entire
data chunks by corrupt all storage servers. To prevent the adversary from gain all chunks, we

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020 1259

need to adopt at least n storage servers where n is a number which is great than the maximum
number of corrupted servers. Fortunately, as seen in Table 3, the cost of encoding does not
highly increase according to the number of servers, which means that we can easily increase
the number of storage servers so that the adversary cannot corrupt all storage servers.

Table 3. Encoding time for various number of servers
of servers 2 3 4 5 6 7 8 9 10

Time 0.026948
sec

0.026813
sec

0.026575
sec

0.027007
sec

0.027303
sec

0.027794
sec

0.027769
sec

0.028284
sec

0.027608
sec

5. Variance
Since we use random noises to randomize positions of shreds, encoded file cannot be
de-duplicated. In this section, we will give a modification of our scheme, which can support
the de-duplication functionality. Before giving concrete description of de-duplicatable
trapdoor digital shredding, we give brief review of existing techniques for the de-duplication
of randomized file. Then, we will give a de-duplicatable trapdoor digital shredding.

5.1 Review of Existing De-duplication Technique
De-duplication is a tool for eliminating repeated copies to save the cost of storage. Due to the
importance of de-duplication, many researchers tried to give secure and efficient
de-duplication technique [12, 8, 9]. However, until the convergence encryption has been
proposed in [7], we cannot de-duplicate encrypted data. In 2013, Bellare et al. proposed a class
of de-duplicatable encryption techniques so-called message-locked encryption whose security
is verified under formal security proof [4]. In [4], four schemes have been proposed with
provable security. Note that existing de-duplicatable encryption techniques can be seen as
variations of the basic convergent encryption in [7]. After the theoretic progress due to Bellare
et al., many improved techniques have been made in terms of the security and the efficiency
[5].

In general, encrypted files are not easy to de-duplicate since different ciphertexts are
computed for the same file if different keys are used for encrypting the file. For security, each
user uses his own secret key, and thus the ciphertext for the user is different the ciphertext
generated by another user. To support the de-duplication for encrypted files, the main idea of
de-duplicatable encryption scheme is to use the same key for the same data by deriving the
encryption key from the data itself. Since clients can obtain the same key for the same data, the
ciphertext is also the same.

To support the de-duplication functionality in our scheme, we will adopt the basic idea of

de-duplicatable encryption. In the following section, we describe our strategy for giving the
functionality with concrete description.

5.2 Trapdoor Digital Shredding with De-duplication
Though there are many duplicated explanation, we will give the description in detail to help
the reader understanding our idea. As in the basic scheme, we let Clt be the client who wants to
store a file F to N servers {Srv1, Srv2, …, SrvN}. The trapdoor digital shredding system

1260 Youn et al.: A New Technique for Improved Data Security without Cryptographic Encryption

supporting de-duplication works as follows.

- Upload. To upload the file F, the client Clt generates an identifier idF for the file and runs
the trapdoor digital shredding function TDS() to generates chunks to transmit each
storage server. The trapdoor digital shredding function runs mainly in two steps;

1. compute tkF from F by running the pseudo random generator by using the file as an

input;
2. generate a set of random information which can be computed as following:

n1 || j1 || n2 || j2 || … || nk || jk = prng(len1, tkF);
3. generate EF using the random noise as in the basic scheme;
4. divide EF into tN shreds;
5. construct N subsets as Sj = {Pi | i = j mod n};
6. compute p1 || p2 || … || pt = prng(len2, tkF || j) and shuffle each subset as in the basic

scheme;
7. set CKj as concatenation of all shreds in Sj; and
8. upload CKj to the j-th storage server.

- Download. As in the basic scheme, to retrieve the file F, the client downloads CKi to Srvi

for all i = 1, …, N, and re-constructs the file using the private trapdoor key tk.

As seen in this section, the only difference between the basic scheme and the de-duplicable

scheme is the seed value tkF used for evaluating the random noises. Differently from the basic
scheme, in the variation, we use the file to be store in a distributed way is used as the input for
the random generation function. Then we can expect that a file is encoded to the same chunks,
which permits the de-duplication of the same copies.

Since the only difference is the randomness of tkF which is influenced by the knowledge
regarding the file to be stored, we can say that the security of the variance is identical with the
security of the basic scheme. The additional cost for supporting the de-duplication is to
compute the random value from the file instead of simply generating it.

6. Conclusion
Until now, the only way to secure stored information is to encrypt the data using well-known
cryptographic algorithms. However, in great part of storage services, service providers are not
use the solution due to the cost of encryption. In this paper, we proposed a new and novel
technique for securing data without using encryption scheme. We also give formal security
analysis for our scheme.

References
[1] United States National Institute of Standards and Technology (NIST), Advanced encryption

standard (AES), Federal Information Processing Standards Publication 197, 2012.
[2] A. Bessani, M. Correia, B. Quaresma, F. Andre and and P. Sousa, “DEPSKY: Dependable and

Secure Storage in a Cloud-of-Clouds,” ACM Transactions on Storage, vol. 9, no. 4, Article 12,
2013. Article (CrossRef Link)

https://doi.org/10.1145/2535929

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020 1261

[3] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti and S. Marchesin, “Efficient Software
Implementation of AES on 32-Bit Platforms,” in Proc. of CHES 2002, LNCS vol. 2523, pp.
159-171, 2003. Article (CrossRef Link)

[4] M. Bellare, S. Keelveedhi and T. Ristenpart, “Message-Locked Encryption and Secure
Deduplication,” in Proc. of EUROCRYPT 2013, LNCS vol. 7881, pp. 296-312, 2013.
Article (CrossRef Link)

[5] M. Bellare, S. Keelveedhi and T. Ristenpart, “DupLESS: Server-Aided Encryption for
Deduplicated Storage,” in Proc. of the 22nd USENIX conference on Security, pp. 179-194, 2013.
Article (CrossRef Link)

[6] R. Bitar and S. El Rouayheb, “Securing Data against Limited-Knowledge Adversaries in
Distributed Storage Systems,” in Proc. of 2015 IEEE International Symposium on Information
Theory (ISIT), pp. 2847-2851, 2015. Article (CrossRef Link)

[7] J. R. Douceur, A. Adya, W.J. Bolosky, P. Simon and M. Theimer, “Reclaiming Space from
Duplicate Files in a Serverless Distributed File System,” in Proc. of Distributed Computing
Systems, pp. 617-624, 2002. Article (CrossRef Link)

[8] S. Halevi, D. Harnik, B. Pinkas and A. Shulman-Peleg, “Proofs of Ownership in Remote Storage
Systems,” in Proc. of 18th ACM. Conf. Computer and Communications Security, ACM Press, pp.
491-500, 2011. Article (CrossRef Link)

[9] D. Harnik, B. Pinkas and A. Shulman-Peleg, “Side channels in cloud services : Deduplication in
cloud storage,” IEEE Security&Privacy, vol. 8, no. 6, pp. 40 - 47, 2010. Article (CrossRef Link)

[10] K. K. Mar, Z. Hu, C. Y. Law and M. Wang, “Secure Cloud Distributed File System,” in Proc. of
The 11th International Conference for Internet Technology and Secured Transactions
(ICITST-2016), pp. 176-181, 2016. Article (CrossRef Link)

[11] V. Kumari and S. Chakravarthy, “Efficient implementation of the AES algorithm for security
applications,” in Proc. of System-on-Chip Conference, pp. 206-210, 2016. Article (CrossRef Link)

[12] M. W. Storer, K, Greenan, D. D. E. Long and E. L. Miller, “Secure data deduplication,” in Proc. of
4th ACM International Workshop on Storage Security and Survivability, pp. 1-10, 2008.
Article (CrossRef Link)

[13] B. N. Van, S.-H. Lee and K.-R. Kwon, “Selective Encryption Algorithm Using Hybrid Transform
for GIS Vector Map,” Journal of Information Processing Systems, vol.13, no.1, pp. 68-82, 2017.
Article (CrossRef Link)

[14] V. Kumari and S. Chakravarthy, “Cooperative privacy game: a novel strategy for preserving
privacy in data publishing,” Human-centric Computing and Information Sciences 2016, 2016.
Article (CrossRef Link)

[15] T. Zhu, X. Zou and J. Pan, “Query with SUM Aggregate Function on Encrypted Floating-Point
Numbers in Cloud,” Journal of Information Processing Systems, vol.13, no.3, pp. 573-589, 2017.
Article (CrossRef Link)

https://doi.org/10.1007/3-540-36400-5_13
https://doi.org/10.1007/978-3-642-38348-9_18
http://dl.acm.org/citation.cfm?id=2534766.2534782
https://doi.org/10.1109/ISIT.2015.7282976
https://doi.org/10.1109/ICDCS.2002.1022312
https://doi.org/10.1145/2046707.2046765
https://doi.org/10.1109/MSP.2010.187
https://doi.org/10.1109/ICITST.2016.7856692
https://doi.org/10.1109/SOCC.2016.7905466
https://doi.org/10.1145/1456469.1456471
https://doi.org/10.3745/JIPS.03.0059
https://doi.org/10.1186/s13673-016-0069-y
https://doi.org/10.3745/JIPS.04.0034

1262 Youn et al.: A New Technique for Improved Data Security without Cryptographic Encryption

Dr. Taek-Young Youn received his BS, MS, and Ph.D from Korea University in
2003, 2005, and 2009, respectively. He is currently a senior researcher at Electronics
and Telecommunications Research Institute (ETRI), Daejeon, Korea. From 2016, he
serve as an associate professor in University of Science and Technology (UST),
Daejeon, Korea. His research interests include cryptography, information security,
authentication, data privacy, and security issues in various communications.

Dr. Nam-Su Jho received the BS degree in Mathematics from Korea Advanced
Institute of Science and Technology, Daejeon, Rep. of Korea, in 1999, and his PhD
degree in Mathematics from Seoul National University, Rep. of Korea, in 2007. Since
2007, he has been with the ETRI, Daejeon, Rep. of Korea as a senior researcher. His
research interests include cryptography and information theory.

