DOI QR코드

DOI QR Code

통계공학을 위한 R 패키지 응용

Applications of R package for statistical engineering

  • 투고 : 2019.12.27
  • 심사 : 2020.02.05
  • 발행 : 2020.02.29

초록

통계공학은 실험계획법, 품질관리/품질경영, 신뢰성공학으로 구성된다. R은 무료로 개방되어 있는 통계패키지로서 통계모형, 통계 계산 및 통계 그래픽 관련 패키지가 방대하다. 우리는 이러한 R 패키지를 통계공학을 위한 기본 통계패키지로 유용하게 사용할 수 있다. 본 논문에서는 통계공학을 위한 R 패키지 응용을 살펴보고 통계공학 관련 CRAN Task Views가 필요함을 제안하였다.

Statistical engineering contains the design of experiments, quality control/management, and reliability engineering. R is a free software environment for statistical computing and graphics that is supported by the R Foundation for Statistical Computing. R package has many functions and libraries for statistical engineering. We can use R package as a useful tool for statistical engineering. This paper shows the applications of R package for statistical engineering and suggests a R Task View for statistical engineering.

키워드

참고문헌

  1. Baumer, B. S., Kaplan, D. T., and Horton, N. J. (2017). Modern Data Science with R, CRC Press, New York.
  2. Boehmke, B. C. (2016). Data Wrangling, Springer, New York.
  3. Cano, E. L., Moguerza, J. M., and Corcoba, M. P. (2015). Quality Control with R, Springer, New York.
  4. Cano, E. L., Moguerza, J. M., and Redchuk, A. (2012). 2. Six Sigma with R, Springer, New York.
  5. Jones, B. and Nachtsheim, C. J. (2011). A class of three-level designs for definitive screening in the presence of second-order effects, Journal of Quality Technology, 43, 1-15. https://doi.org/10.1080/00224065.2011.11917841
  6. Jones, B. and Nachtsheim, C. J. (2013). Definitive screening designs with added two-level categorical factors, Journal of Quality Technology, 45, 121-129. https://doi.org/10.1080/00224065.2013.11917921
  7. Juan, E. M. S., Edra, E. V., Sales, J. M., Lustre, A. O., and Resurreccion, A. V. A. (2006). Utilization of peanut fines in the optimization of peanut polvoron using mixture response methodology, International Journal of Food Science and Technology, 41, 768-774. https://doi.org/10.1111/j.1365-2621.2005.01065.x
  8. Lawson, J. (2015). Design and Analysis of Experiments with R, CRC Press, New York.
  9. Montgomery, D. C. (2013a). Design and Analysis of Experiments (8th ed), John Wiley, Singapore.
  10. Montgomery, D. C. (2013b). Introduction to Statistical Quality Control (7th ed), John Wiley, New York.
  11. Na, J. H. (2017). R Data Mining, Free Academy, Seoul.
  12. Qiu, P. (2014). Introduction to Statistical Process Control, CRC Press, New York.
  13. Wilkinson, L. (2005). The Grammar of Graphics, Springer, New York.
  14. Williams, G. J. (2017). The Essentials of Data Science, CRC Press, New York.