References
- Bohning D (1992). Multinomial logistic regression algorithm, Annals of the Institute of Statistical Mathematics, 44, 197-200. https://doi.org/10.1007/BF00048682
- Bondell HD, Krishna A, and Ghosh SK (2010). Joint variable selection for fixed and random effects in linear mixed-effects models, Biometrics, 66, 1069-1077. https://doi.org/10.1111/j.1541-0420.2010.01391.x
- Cawley GC, Talbot NL, and Girolami M (2007). Sparse multinomial logistic regression via Bayesian l1 regularisation. In Advances in Neural Information Processing Systems, 209-216.
- Chen L, Yang J, Li J, and Wang X (2014). Multinomial regression with elastic net penalty and its grouping effect in gene selection. In Abstract and Applied Analysis, 2014, Hindawi.
- Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle proper-ties, Journal of the American statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Fan J and Lv J (2011). Nonconcave penalized likelihood with np-dimensionality, IEEE Transactions on Information Theory, 57, 5467-5484. https://doi.org/10.1109/TIT.2011.2158486
- Fan J and Peng H (2004). Nonconcave penalized likelihood with a diverging number of parameters, The Annals of Statistics, 32, 928-961. https://doi.org/10.1214/009053604000000256
- Friedman J, Hastie T, and Tibshirani R (2010). Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, 33, 1.
- Hoerl AE and Kennard RW (1970). Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634
- Huang J, Breheny P, Lee S, Ma S, and Zhang CH (2016). The Mnet method for variable selection, Statistica Sinica, 26, 903-923.
- Huang J, Horowitz JL, and Ma S (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models, The Annals of Statistics, 36, 587-613. https://doi.org/10.1214/009053607000000875
- Huang J, Horowitz JL, and Wei F (2010). Variable selection in nonparametric additive models, The Annals of Statistics, 38, 2282-2313. https://doi.org/10.1214/09-AOS781
- Huttunen H, Yancheshmeh FS, and Chen K (2016). Car type recognition with deep neural networks. In 2016 IEEE Intelligent Vehicles Symposium (IV), 1115-1120, IEEE.
- Kim J, Kim Y, and Kim Y (2008). A gradient-based optimization algorithm for lasso, Journal of Computational and Graphical Statistics, 17, 994-1009. https://doi.org/10.1198/106186008X386210
- Kim Y, Kwon S, and Song SH (2006). Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data, Computational Statistics & Data Analysis, 51, 1643-1655. https://doi.org/10.1016/j.csda.2006.06.007
- Krishnapuram B, Carin L, Figueiredo MA, and Hartemink AJ (2005). Sparse multinomial logistic regression: Fast algorithms and generalization bounds, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 957-968. https://doi.org/10.1109/TPAMI.2005.127
- Kwon S and Kim Y (2012). Large sample properties of the SCAD-penalized maximum likelihood estimation on high dimensions, Statistica Sinica, 12, 629-653.
- Kwon S, Kim Y, and Choi H (2013). Sparse bridge estimation with a diverging number of parameters, Statistics and Its Interface, 6, 231-242. https://doi.org/10.4310/SII.2013.v6.n2.a7
- Kwon S, Lee S, and Kim Y (2015). Moderately clipped lasso, Computational Statistics & Data Analysis, 92, 53-67. https://doi.org/10.1016/j.csda.2015.07.001
- Kwon S, Oh S, and Lee Y (2016). The use of random-effect models for high-dimensional variable selection problems, Computational Statistics & Data Analysis, 103, 401-412. https://doi.org/10.1016/j.csda.2016.05.016
- Lee S, Kwon S, and Kim Y (2016). A modified local quadratic approximation algorithm for penalized optimization problems, Computational Statistics & Data Analysis, 94(C), 275-286. https://doi.org/10.1016/j.csda.2015.08.019
- Lee Y and Oh HS (2014). A new sparse variable selection via random-effect model, Journal of Multivariate Analysis, 125, 89-99. https://doi.org/10.1016/j.jmva.2013.11.016
- Shen X, Pan W, and Zhu Y (2012). Likelihood-based selection and sharp parameter estimation, Journal of the American Statistical Association, 107, 223-232. https://doi.org/10.1080/01621459.2011.645783
- Simon N, Friedman J, and Hastie T (2013). A blockwise descent algorithm for group-penalized multiresponse and multinomial regression. arXiv preprint arXiv:1311.6529.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Tutz G (2011). Regression for categorical data, volume 34. Cambridge University Press.
- Tutz G, PossneckerW, and Uhlmann L (2015). Variable selection in general multinomial logit models, Computational Statistics & Data Analysis, 82, 207-222. https://doi.org/10.1016/j.csda.2014.09.009
- Um S, Kim D, Lee S, and Kwon S (2019). On the strong oracle property of concave penalized estimators with infinite penalty derivative at the origin, The Korean Journal of Statistics, Under review.
- Xie H and Huang J (2009). SCAD-penalized regression in high-dimensional partially linear models, The Annals of Statistics, 37, 673-696. https://doi.org/10.1214/07-AOS580
- Yuan M and Lin Y (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Yuille AL and Rangarajan A (2002). The concave-convex procedure (CCCP). In Advances in Neural Information Processing Systems, 1033-1040.
- Zhang CH (2010). Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729
- Zhang CH and Zhang T (2012). A general theory of concave regularization for high-dimensional sparse estimation problems, Statistical Science, 27, 576-593. https://doi.org/10.1214/12-STS399
- Zhao P and Yu B (2006). On model selection consistency of lasso, Journal of Machine Learning Research, 7, 2541-2563.
- Zhu J and Hastie T (2004). Classification of gene microarrays by penalized logistic regression, Biostatistics, 5, 427-443. https://doi.org/10.1093/biostatistics/kxg046
- Zou H and Hastie T (2005). Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
- Zou H and Li R (2008). One-step sparse estimates in nonconcave penalized likelihood models, Annals of Statistics, 36, 1509-1533 https://doi.org/10.1214/009053607000000802