참고문헌
- Barndorff-Nielsen OE (1977). Exponentially decreasing distributions for the logarithm of particle size, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 353, 401-419. https://doi.org/10.1098/rspa.1977.0041
- Barndorff-Nielsen OE (1997). Processes of normal inverse Gaussian type, Finance and Stochastics, 2, 41-68. https://doi.org/10.1007/s007800050032
- Behr A and Potter U (2009). Alternatives to the normal model of stock returns: Gaussian mixture, generalised log F and generalised hyperbolic models, Annals of Finance, 5, 49-68. https://doi.org/10.1007/s10436-007-0089-8
- Bolance C, Guillen M, Pelican E, and Vernic R (2008). Skewed bivariate models and nonparametric estimation for the CTE risk measure, Insurance: Mathematics and Economics, 43, 386-393. https://doi.org/10.1016/j.insmatheco.2008.07.005
- Eberlein E and Keller U (1995). Hyperbolic distributions in finance, Bernoulli, 1, 281-299. https://doi.org/10.2307/3318481
- Eriksson A, Ghysels E, and Wang F (2009). The normal inverse Gaussian distribution and the pricing of derivatives, The Journal of Derivatives, 16, 23-37. https://doi.org/10.3905/JOD.2009.16.3.023
- Fajardo J and Farias A (2004). Generalized hyperbolic distributions and Brazilian data, Brazilian Review of Econometrics, 24, 249-271. https://doi.org/10.12660/bre.v24n22004.2712
- Figueroa-Lopez JE, Lancette SR, Lee K, and Mi Y (2011). Handbook of Modeling High-Frequency Data in Finance, John Wiley & Sons, Hoboken, 3-26.
- Frees E and Valdez E (1998). Understanding relationships using copulas, North American Actuarial Journal, 2, 1-25. https://doi.org/10.1080/10920277.1998.10595667
- Ghysels E and Wang F (2014). Moment-implied densities: properties and applications, Journal of Business & Economic Statistics, 32, 88-111. https://doi.org/10.1080/07350015.2013.847842
- Hansen B (1994). Autoregressive conditional density estimation, International Economic Review, 35, 705-730. https://doi.org/10.2307/2527081
- Karlis D (2002). An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution, Statistics & Probability Letters, 57, 43-52. https://doi.org/10.1016/S0167-7152(02)00040-8
- Karlis D and Lillestol J (2004). Bayesian estimation of NIG models via Markov chain Monte Carlo methods, Applied Stochastic Models in Business and Industry, 20, 323-338. https://doi.org/10.1002/asmb.544
- Kim J (2019). A study on the estimation of spliced distributions using exponential-estimation method (Master's thesis), Korea University, Seoul.
- Madan D and Seneta E (1990). The VG model for share market returns, Journal of Financial Economics, 63, 511-524.
- McNeil A (1997). Estimating the tails of loss severity distributions using extreme value theory, ASTIN Bulletin, 27, 117-137. https://doi.org/10.2143/AST.27.1.563210
- Prause K (1999). The generalized hyperbolic model: estimation, financial derivatives, and risk measures (Ph.D. thesis), University of Freiburg, Germany.
- Rydberg TH (1997). The normal inverse Gaussian Levy process: simulation and approximation, Communications in Statistics: Stochastic Models, 13, 887-910. https://doi.org/10.1080/15326349708807456
- Yoon J and Song S (2016). A numerical study of adjusted parameter estimation in normal inverse Gaussian distribution, The Korean Journal of Applied Statistics, 29, 741-752. https://doi.org/10.5351/KJAS.2016.29.4.741