DOI QR코드

DOI QR Code

Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout

  • Zhou, Yao (School of Engineering and Technology, China University of Geosciences (Beijing)) ;
  • Wang, Gui H. (School of Engineering and Technology, China University of Geosciences (Beijing)) ;
  • Chang, Yong H. (School of Engineering and Technology, China University of Geosciences (Beijing))
  • 투고 : 2019.11.21
  • 심사 : 2020.02.04
  • 발행 : 2020.03.25

초록

This paper focuses on the engineering properties of Bentonite-Cement-Sodium silicate (BCS) grout, which was prepared by partially replacing the ordinary Portland cement in Cement-Sodium silicate grout with lithium bentonite (Li-bent) and sodium bentonite (Na-bent), respectively. The effect of different Water-to-Solid ratio (W/S) and various replacement percentages of bentonite on the apparent viscosity, bleeding, setting time, and early compressive strength of BCS grout were investigated. The XRD method was used to detect its hydration products. The results showed that both bentonites played a positive role in the stability of BCS grout, increased its apparent viscosity. Na-bent prolonged the setting time of BCS, while 5% of Li-bent shortened the setting time of BCS. The XRD analysis indicated that the hydration products between the mixture containing Na-bent and Li-bent did not differ much. Using bentonite as supplementary cementitious material (SCM) to replace partial cement is a promising way to cut down on carbon dioxide emissions and to produce low-cost, eco-friendly, non-toxic, and water-resistant grout. In addition, Li-bent was superior to Na-bent in improving the strength and the thickening of BCS grouts.

키워드

과제정보

The research described in this paper was financially supported by Groundwater Safety Control Technology for Urban Rail Transit Project Construction (grant number 3-4- 2018-008).

참고문헌

  1. Acevedo-Martinez, E., Gomez-Zamorano, L.Y. and Escalante-Garcia, J.I. (2012), "Portland cement-blast furnace slag mortars activated using waterglass: Part 1: Effect of slag replacement and alkali concentration", Constr. Build. Mater., 37, 462-469. https://doi.org/10.1016/j.conbuildmat.2012.07.041.
  2. Al-Amoudi, O.S.B., Ahmed, S., Khan, S.M.S. and Maslehuddin, M. (2019), "Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material", Adv. Concrete Constr., 8(2), 119-126. https://doi.org/10.12989/acc.2019.8.2.119.
  3. Alexander, J.A., Ahmad Zaini, M.A., Surajudeen, A., Aliyu, E.N.U. and Omeiza, A.U. (2018), "Surface modification of low-cost bentonite adsorbents-A review", Particul. Sci. Technol., 37(5), 534-545. https://doi.org/10.1080/02726351.2018.1438548.
  4. Andrejkovicova, S., Alves, C., Velosa, A. and Rocha, F. (2015), "Bentonite as a natural additive for lime and lime-metakaolin mortars used for restoration of adobe buildings", Cement Concrete Compos., 60, 99-110. https://doi.org/10.1016/j.cemconcomp.2015.04.005.
  5. Ata, A.A., Salem, T.N. and Elkhawas, N.M. (2015), "Properties of soil-bentonite-cement bypass mixture for cutoff walls", Constr. Build. Mater., 93, 950-956. https://doi.org/10.1016/j.conbuildmat.2015.05.064.
  6. Azadi, M.R., Taghichian, A. and Taheri, A. (2017), "Optimization of cement-based grouts using chemical additives", J. Rock Mech. Geotech. Eng., 9(4), 623-637. https://doi.org/10.1016/j.jrmge.2016.11.013.
  7. Baquerizo, L.G., Matschei, T., Scrivener, K.L., Saeidpour, M. and Wadso, L. (2015), "Hydration states of AFm cement phases", Cement Concrete Res. 73, 143-157. https://doi.org/10.1016/j.cemconres.2015.02.011.
  8. Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb $CO_2$ emissions in cement industry", J. Clean. Prod., 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.
  9. Bentz, D.P., Garboczi, E.J., Haecker, C.J. and Jensen, O.M. (1999), "Effects of cement particle size distribution on performance properties of cement-based materials", Cement Concrete Res., 29(10), 1663-1671. https://doi.org/10.1016/S0008-8846(99)00163-5.
  10. Benyahia, A. and Ghrici, M. (2018), "Behaviour of self compacting repair mortars based on natural pozzolana in hot climate", Adv. Concrete Constr., 6(3), 285-296. https://doi.org/10.12989/acc.2018.6.3.285.
  11. Bohac, M., Palou, M., Novotny, R., Masilko, J., Všiansky, D. and Stanek, T. (2014), "Investigation on early hydration of ternary Portland cement-blast-furnace slag-metakaolin blends", Constr. Build. Mater., 64, 333-341. https://doi.org/10.1016/j.conbuildmat.2014.04.018.
  12. Bronselaer, B., Winton, M., Griffies, S.M., Hurlin, W.J., Rodgers, K.B., Sergienko, O.V., Stouffer, R.J. and Russell, J.L. (2018), "Change in future climate due to Antarctic meltwater", Nature, 564(7734), 53-58. https://doi.org/10.1038/s41586-018-0712-z.
  13. Celik, F. and Canakci, H. (2015), "An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA)", Constr. Build. Mater., 91, 187-194. https://doi.org/10.1016/j.conbuildmat.2015.05.025.
  14. David, G., Mark, S.S., Owen, G., Johan, R.M., Ohman, M.C., Priya, S., Will, S., Gisbert, G., Norichika, K. and Ian, N. (2013), "Policy: Sustainable development goals for people and planet", Nature, 495, 305307. https://doi.org/10.1038/495305a.
  15. Deng, Y.H., Zhang, C.Q., Shao, H.Q., Wu, H. and Xie, N.Q. (2014), "Effects of different lithium admixtures on ordinary portland cement paste properties", Adv. Mater. Res., 919-921, 1780-1789. https://doi.org/10.4028/www.scientific.net/AMR.919-921.1780.
  16. Dickens, W.A., Kuhn, G., Leng, M.J., Graham, A.G.C., Dowdeswell, J.A., Meredith, M.P., Hillenbrand, C.D., Hodgson, D.A., Roberts, S.J., Sloane, H. and Smith, J.A. (2019), "Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode", Sci. Rep., 9(1), 14606. https://doi.org/10.1038/s41598-019-50897-4.
  17. Drochytka, R. and Magdalena, K. (2017), "Options for the remediation of embankment dams using suitable types of alternative raw materials", Constr. Build. Mater., 143, 649-658. https://doi.org/10.1016/j.conbuildmat.2017.02.089.
  18. Essington, M.E. (2003), Soil and Water Chemistry: An Intergrative Approach, CRC Press, Boca Raton, London, New York Washington, D.C, USA.
  19. Feng, X.Z., Lugovoy, O. and Qin, H. (2018), "Co-controlling CO2 and NOx emission in China's cement industry: An optimal development pathway study", Adv. Climate Change Res., 9(1), 34-42. https://doi.org/10.1016/j.accre.2018.02.004.
  20. GB/T 17671 (1999), Method of Testing Cements-Determination of Strength China Institute of Standardization, B.J., China.
  21. GB/T 5005 (2010), Specifications of Drilling Fluid Materials: Petroleum and Natural Gas Industries-Drilling Fluid Materials-Specifications and Tests, 75.020, China Institute of Standardization, B.J., China.
  22. Gunister, E., Alemdar, S.A. and Gungor, N. (2004), "Effect of sodium dodecyl sulfate on flow and electrokinetic properties of Na-activated bentonite dispersions", Bull. Mater. Sci., 27(3), 317-322. https://doi.org/10.1007/bf02708522.
  23. He, Z., Li, Q., Wang, J., Ning, Y., Shuai, J. and Kang, M. (2016), "Effect of silane treatment on the mechanical properties of polyurethane/water glass grouting materials", Constr. Build. Mater., 116, 110-120. https://doi.org/10.1016/j.conbuildmat.2016.04.112.
  24. Huang, W., Leong, Y.K., Chen, T., Au, P.I., Liu, X. and Qiu, Z. (2016), "Surface chemistry and rheological properties of API bentonite drilling fluid: pH effect, yield stress, zeta potential and ageing behaviour", J. Petrol. Sci. Eng., 146, 561-569. https://doi.org/10.1016/j.petrol.2016.07.016.
  25. Huntzinger, D.N. and Eatmon, T.D. (2009), "A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies", J. Cleaner Prod., 17(7), 668-675. https://doi.org/10.1016/j.jclepro.2008.04.007.
  26. Imam, A., Kumar, V. and Srivastava, V. (2018), "Review study towards effect of Silica Fume on the fresh and hardened properties of concrete", Adv. Concrete Constr., 6(2), 145-157. https://doi.org/10.12989/acc.2018.6.2.145.
  27. Juenger, M.C.G. and Siddique, R. (2015), "Recent advances in understanding the role of supplementary cementitious materials in concrete", Cement Concrete Res., 78, 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018.
  28. Juilland, P., Gallucci, E., Flatt, R. and Scrivener, K. (2010), "Dissolution theory applied to the induction period in alite hydration", Cement Concrete Res., 40(6), 831-844. https://doi.org/10.1016/j.cemconres.2010.01.012.
  29. Kaminskas, R., Cesnauskas, V. and Kubiliute, R. (2015), "Influence of different artificial additives on Portland cement hydration and hardening", Constr. Build. Mater., 95, 537-544. https://doi.org/10.1016/j.conbuildmat.2015.07.113.
  30. Kazemian, S., Prasad, A., Huat, B.B.K., Bazaz, J.B., Aziz, F.N. A.A. and Ali, T.A.M. (2011), "Influence of cement - sodium silicate grout admixed with calcium chloride and kaolinite on sapric peat", J. Civil Eng. Manage., 17(3), 309-318. https://doi.org/10.3846/13923730.2011.589209.
  31. Khaheshi, S., Riahi, S., Mohammadi-Khanaposhtani, M. and shokrollahzadeh, H. (2019), "Prediction of amines capacity for carbon dioxide absorption based on structural characteristics", Indus. Eng. Chem. Res., 58, 8763-8771. https://doi.org/10.1021/acs.iecr.9b00567.
  32. Koch, D. (2002), "Bentonites as a basic material for technical base liners and site encapsulation cut-off walls", Appl. Clay Sci., 21(1-2), 1-11. https://doi.org/10.1016/S0169-1317(01)00087-4.
  33. Li, S., Sha, F., Liu, R., Zhang, Q. and Li, Z. (2017), "Investigation on fundamental properties of microfine cement and cement-slag grouts", Constr. Build. Mater., 153, 965-974. https://doi.org/10.1016/j.conbuildmat.2017.05.188.
  34. Li, S., Zhang, J., Li, Z., Gao, Y., Qi, Y., Li, H. and Zhang, Q. (2019), "Investigation and practical application of a new cementitious anti-washout grouting material", Constr. Build. Mater., 224, 66-77. https://doi.org/10.1016/j.conbuildmat.2019.07.057.
  35. Liu, D., Edraki, M. and Berry, L. (2018), "Investigating the settling behaviour of saline tailing suspensions using kaolinite, bentonite, and illite clay minerals", Powder Technol., 326, 228-236. https://doi.org/10.1016/j.powtec.2017.11.070.
  36. Liu, Y. and Chen, B. (2019), "Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement", Constr. Build. Mater., 214, 516-526. https://doi.org/10.1016/j.conbuildmat.2019.04.158
  37. Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
  38. Man, X., Aminul Haque, M. and Chen, B. (2019), "Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay", Constr. Build. Mater., 227, 116656. https://doi.org/10.1016/j.conbuildmat.2019.08.037.
  39. Martin, S., Lepaumier, H., Picq, D., Kittel, J., de Bruin, T., Faraj, A. and Carrette, P.L. (2012), "New amines for $CO_2$ capture. IV. degradation, corrosion, and quantitative structure property relationship model", Indus. Eng. Chem. Res., 51(18), 6283-6289. https://doi.org/10.1021/ie2029877.
  40. Massoussi, N., Keita, E. and Roussel, N. (2017), "The heterogeneous nature of bleeding in cement pastes", Cement Concrete Res., 95, 108-116. https://doi.org/10.1016/j.cemconres.2017.02.012.
  41. Nas, M. and Kurbetci, S. (2018), "Durability properties of concrete containing metakaolin", Adv. Concrete Constr., 6(2), 159-175. https://doi.org/10.12989/acc.2018.6.2.159.
  42. Paliwal, G. and Marua, S. (2017), "Effect of fly ash and plastic waste on mechanical and durability properties of concrete", Adv. Concrete Constr., 5(6), 575-586. https://doi.org/10.12989/acc.2017.5.6.575.
  43. Pantazopoulos, I.A., Markou, I.N., Christodoulou, D.N., Droudakis, A.I., Atmatzidis, D.K., Antiohos, S.K. and Chaniotakis, E. (2012), "Development of microfine cement grouts by pulverizing ordinary cements", Cement Concrete Compos., 34(5), 593-603. https://doi.org/10.1016/j.cemconcomp.2012.01.009.
  44. Petra, R.K. and Mukharjee, B.B. (2018), "Influence of granulated blast furnace slag as fine aggregate on properties of cement mortar", Adv. Concrete Constr., 6(6), 611-629. https://doi.org/10.12989/acc.2018.6.6.611.
  45. Pusch, R. (2015), Bentonite Clay: Environmental Properties and Applications, CRC Press, Taylor & Francis Group, Boca Raton London, New York.
  46. Scrivener, K.L. and Nonat, A. (2011), "Hydration of cementitious materials, present and future", Cement Concrete Res., 41(7), 651-665. https://doi.org/10.1016/j.cemconres.2011.03.026.
  47. Sha, F., Li, S.C., Liu, R.T., Li, Z.F. and Zhang, Q.S. (2018), "Experimental study on performance of cement-based grouts admixed with fly ash, bentonite, superplasticizer and water glass", Constr. Build. Mater., 161, 282-291. https://doi.org/10.1016/j.conbuildmat.2017.11.034.
  48. Shabab, M.E., Shahzada, K., Gencturk, B., Ashraf, M. and Fahad, M. (2015), "Synergistic effect of fly ash and bentonite as partial replacement of cement in mass concrete", KSCE J. Civil Eng., 20(5), 1987-1995. https://doi.org/10.1007/s12205-015-0166-x.
  49. Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021.
  50. Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M., Velicogna, I., ... & Nowicki, S. (2018), "Mass balance of the antarctic ice sheet from 1992 to 2017", Nature, 558(7709), 219-222. https://doi.org/10.1038/s41586-018-0179-y.
  51. Shepherd, A., Gilbert, L., Muir, A.S., Konrad, H., McMillan, M., Slater, T., Briggs, K.H., Sundal, A.V., Hogg, A.E. and Engdahl, M.E. (2019), "Trends in antarctic ice sheet elevation and mass", Geophys. Res. Lett., 46(14), 8174-8183. https://doi.org/10.1029/2019gl082182.
  52. Shi, C., Jimenez, A.F. and Palomo, A. (2011), "New cements for the 21st century: The pursuit of an alternative to Portland cement", Cement Concrete Res., 41(7), 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016.
  53. Siddique, R. and Khan, M.I. (2011), Supplementary Cementing Materials, Springer Science & Business Media, Springer, Heidelberg, Dordrecht, London, New York, UK.
  54. Sunil, B.M., Manjunatha, L.S. and Yaragal, S.C. (2017), "Durability studies on concrete with partial replacement of cement and fine aggregates by fly ash and tailing material", Adv. Concrete Constr., 5(6), 671-683. https://doi.org/10.12989/acc.2017.5.6.671.
  55. Thomas, M. (2013), Supplementary Cementing Materials In Concrete, CRC Press, Boca Raton, London, New York, UK.
  56. Viktor, S. and Galyna, K. (2017), "Effect of water glass on early hardening of portland cement", Procedia Eng., 172, 977-981. https://doi.org/10.1016/j.proeng.2017.02.119.
  57. Viswanath, D.S., Ghosh, T.K., Prasad, D.H.L., Dutt, N.V.K. and Rani, K.Y. (2007), Viscosity Of Liquids, Springer, Netherlands.
  58. Wang, J., Qian, C., Qu, J. and Guo, J. (2018), "Effect of lithium salt and nano nucleating agent on early hydration of cement based materials", Constr. Build. Mater. 174, 24-29. https://doi.org/10.1016/j.conbuildmat.2018.04.073.
  59. Wang, S., Wang, J.F., Yuan, C.P., Chen, L.Y., Xu, S.T. and Guo, K.B. (2019), "Development of the nano-composite cement: Application in regulating grouting in complex ground conditions", J. Mountain Sci., 15(7), 1572-1584. https://doi.org/10.1007/s11629-017-4729-9.
  60. WBCSD/IEA (2009), Cement Technology Roadmap 2009 : Carbon Emissions Reductions up to 2050, World Business Council for Sustainable Development/International Energy Agency (WBCSD/IEA), Paris, France.
  61. Wong, L.S., Hashim, R. and Ali, F. (2013), "Utilization of sodium bentonite to maximize the filler and pozzolanic effects of stabilized peat", Eng. Geol., 152(1), 56-66. https://doi.org/10.1016/j.enggeo.2012.10.019.
  62. Xu, D., Cui, Y.S., Li, H., Yang, K., Xu, W. and Chen, Y.X. (2015), "On the future of Chinese cement industry", Cement Concrete Res. 78, 2-13. https://doi.org/10.1016/j.cemconres.2015.06.012.
  63. Xu, J.H., Fleiter, T., Eichhammer, W. and Fan, Y. (2012), "Energy consumption and $CO_2$ emissions in China's cement industry: A perspective from LMDI decomposition analysis", Energy Policy, 50, 821-832. https://doi.org/10.1016/j.enpol.2012.08.038.
  64. Yang, K.H., Jung, Y.B., Cho, M.S. and Tae, S.H. (2015), "Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete", J. Clean. Prod., 103, 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018.
  65. Ye, W.M., He, Y., Chen, Y.G., Chen, B. and Cui, Y.J. (2016), "Thermochemical effects on the smectite alteration of GMZ bentonite for deep geological repository", Environ. Earth Sci., 75(10), https://doi.org/10.1007/s12665-016-5716-0.
  66. Zhang, J., Liu, L., Zhang, F. and Cao, J. (2018), "Development and application of new composite grouting material for sealing groundwater inflow and reinforcing wall rock in deep mine", Sci. Rep., 8(1), 5642. https://doi.org/10.1038/s41598-018-23995-y.
  67. Zhao, N., Wang, S., Quan, X. and Wang, C. (2019), "Study on the coupled effects of bentonite and high-volume fly ash on mechanical properties and microstructure of engineered cementitious composites (ECC)", KSCE J. Civil Eng., 23(6), 2628-2635. https://doi.org/10.1007/s12205-019-2102-y.
  68. Zhou, Z., Zang, H., Wang, S., Du, X., Ma, D. and Zhang, J. (2018), "Filtration behaviour of cement-based grout in porous media", Tran. Porous Media, 125(3), 435-463. https://doi.org/10.1007/s11242-018-1127-x.