DOI QR코드

DOI QR Code

Strength development of ground perlite-based geopolymer mortars

  • Celikten, Serhat (Department of Civil Engineering, Nevsehir Haci Bektas Veli University) ;
  • Isikdag, Burak (Porsuk Vocational School, Eskisehir Technical University)
  • 투고 : 2019.02.18
  • 심사 : 2020.01.04
  • 발행 : 2020.03.25

초록

Raw perlite is a volcanic alumino-silicate and is used as aggregate in the construction industry. The high silica and alumina contained in the raw perlite allows the production of geopolymer mortar with the help of alkaline solutions. In this study, different geopolymer mortars are obtained by mixing ground perlite (GP), sodium hydroxide (NaOH), water and CEN standard sand and the strength and microstructure of these mortars are investigated. Mortar specimens are placed in the oven 24 hours after casting and kept at different temperatures and times, then the specimens are cured under laboratory conditions until the day of strength tests. After curing, unit weight, ultrasound pulse velocity, flexural and compressive strengths are determined. Experimental results indicate that the mechanical properties of the mortars enhance with increasing oven-curing period and temperatures as well as increasing NaOH molarity. In addition, SEM/EDS and XRD analyses are performed on the mortar specimens and the results are interpreted.

키워드

참고문헌

  1. Al Safi, A.A. (2019), "Blast furnace slag-based geopolymer mortars cured at different conditions: modeling and optimization of compressive strength", Eur. J. Environ. Civil Eng., 1-13. https://doi.org/10.1080/19648189.2019.1598502.
  2. Alanazi, H., Yang, M., Zhang, D. and Gao, Z. (2017), "Early strength and durability of metakaolin-based geopolymer concrete", Mag. Concrete Res., 69(1), 46-54. https://doi.org/10.1680/jmacr.16.00118.
  3. Aliabdo, A.A., Elmoaty, A.E.M.A. and Salem, H.A. (2016), "Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance", Constr. Build. Mater., 123, 581-593. https://doi.org/10.1016/j.conbuildmat.2016.07.043.
  4. ASTM C 597-09 (2009), Standard Test Method for Pulse Velocity through Concrete, ASTM International, USA.
  5. Aydin, S. (2013), "A ternary optimisation of mineral additives of alkali activated cement mortars", Constr. Build. Mater., 43, 131-138. https://doi.org/10.1016/j.conbuildmat.2013.02.005.
  6. Aziz, I.H., Abdullah, M.M.A.B., Heah, C.Y. and Liew, Y.M. (2019), "Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature", Adv. Cement Res., 1-28. https://doi.org/10.1680/jadcr.18.00162.
  7. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Alkali activation of Australian slag cements", Cement Concrete Res., 29(1), 113-120. https://doi.org/10.1016/S0008-8846(98)00170-7.
  8. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2002), "Sulfate attack on alkali-activated slag concrete", Cement Concrete Res., 32(2), 211-216. https://doi.org/10.1016/S0008-8846(01)00659-7.
  9. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2003), "Resistance of alkali-activated slag concrete to acid attack", Cement Concrete Res., 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X.
  10. Bernal, S.A., de Gutierrez, R.M., Pedraza, A.L., Provis, J.L., Rodriguez, E.D. and Delvasto, S. (2011), "Effect of binder content on the performance of alkali-activated slag concretes", Cement Concrete Res., 41(1), 1-8. https://doi.org/10.1016/j.cemconres.2010.08.017.
  11. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N. and Ramezanianpour, A.A. (2011), "Engineering properties of alkali-activated natural pozzolan concrete", ACI Mater. J, 108(1), 64-72.
  12. Celik, A.G., Kilic, A.M. and Cakal, G.O. (2013), "Expanded perlite aggregate characterization for use as a lightweight construction raw material", Physicochem. Prob. Min. Pr., 49(2), 689-700. http://dx.doi.org/10.5277/ppmp130227.
  13. Celikten, S., Saridemir, M. and Deneme, I.O. (2019), "Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature", Constr. Build. Mater., 217, 50-61. https://doi.org/10.1016/j.conbuildmat.2019.05.055.
  14. Celikten, S. and Saridemir, M. (2018), "An Investigation on the production potential of geopolymer mortar with tuncbilek fly ash", Proceedings of the International Ceramic, Glass, Porcelain, Enamel, Glaze and Pigment Congress SERES IV, EskiSehir, Turkey, October.
  15. Bilgic, S., Celikten, S., Canbaz, M. and Bilgic, C. (2018), "Determination of the surface properties of alkali-activated slag by inverse gas chromatography", Proceedings of the International Conference on Innovations in Engineering and Technology, (PIET-18), Paris, France, September.
  16. Collins, F.G. and Sanjayan, J.G. (1999), "Workability and mechanical properties of alkali activated slag concrete", Cement Concrete Res., 29(3), 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1.
  17. Davidovits, J. (2008). Geopolymer Chemistry and Applications, Geopolymer Institute.
  18. Demirboga, R. and Gul, R. (2003), "The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete", Cement Concrete Res., 33(5), 723-727. https://doi.org/10.1016/S0008-8846(02)01032-3.
  19. Duxson, P., Provis, J.L., Lukey, G.C. and Van Deventer, J.S. (2007), "The role of inorganic polymer technology in the development of 'green concrete", Cement Concrete Res., 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
  20. El Hafid, K., Hajjaji, M. and El Hafid, H. (2017), "Influence of NaOH concentration on microstructure and properties of cured alkali-activated calcined clay", J. Build. Eng., 11, 158-165. https://doi.org/10.1016/j.jobe.2017.04.012.
  21. Erdogan, S.T. (2011), "Use of perlite to produce geopolymers", 31st Cement and Concrete Science Conference, Novel Developments and Innovation in Cementitious Materials, London.
  22. Erdogan, S.T. (2014), "Properties of ground perlite geopolymer mortars", J. Mater. Civil Eng., 27(7), 04014210. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001172.
  23. Fernandez-Jimenez, A., Palomo, J.G. and Puertas, F. (1999), "Alkali-activated slag mortars: mechanical strength behaviour", Cement Concrete Res., 29(8), 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4.
  24. Gunasekera, C., Setunge, S. and Law, D.W. (2017), "Correlations between mechanical properties of low-calcium fly ash geopolymer concretes", J. Mater. Civil Eng., 29(9), 04017111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001916.
  25. Hardjito, D., Wallah, S.E., Sumajouw, D.M. and Rangan, B.V. (2004), "On the development of fly ash-based geopolymer concrete", Mater. J., 101(6), 467-472.
  26. Hassan, H.S., Abdel-Gawwad, H.A., Garcia, S.V. and Israde-Alcantara, I. (2018), "Fabrication and characterization of thermally-insulating coconut ash-based geopolymer foam", Waste Manage., 80, 235-240. https://doi.org/10.1016/j.wasman.2018.09.022.
  27. He, J., Jie, Y., Zhang, J., Yu, Y. and Zhang, G. (2013). "Synthesis and characterization of red mud and rice husk ash-based geopolymer composites". Cement Concrete Compos., 37, 108-118. https://doi.org/10.1016/j.cemconcomp.2012.11.010.
  28. Hojati, M. and Radlinska, A. (2017), "Shrinkage and strength development of alkali-activated fly ash-slag binary cements", Constr. Build. Mater., 150, 808-816. https://doi.org/10.1016/j.conbuildmat.2017.06.040.
  29. Hossain, M.M., Karim, M.R., Hossain, M.K., Islam, M.N. and Zain, M.F.M. (2015), "Durability of mortar and concrete containing alkali-activated binder with pozzolans: a review", Constr. Build. Mater., 93, 95-109. https://doi.org/10.1016/j.conbuildmat.2015.05.094.
  30. ISikdag, B. (2015), "Characterization of lightweight ferrocement panels containing expanded perlite-based mortar", Constr. Build. Mater., 81, 15-23. https://doi.org/10.1016/j.conbuildmat.2015.02.009.
  31. Krizan, D. and Zivanovic, B. (2002), "Effects of dosage and modulus of water glass on early hydration of alkali-slag cements", Cement Concrete Res., 32(8), 1181-1188. https://doi.org/10.1016/S0008-8846(01)00717-7.
  32. Lizcano, M., Gonzalez, A., Basu, S., Lozano, K. and Radovic, M. (2012), "Effects of water content and chemical composition on structural properties of alkaline activated metakaolin‐based geopolymers", J. Am. Ceram. Soc., 95(7), 2169-2177. https://doi.org/10.1111/j.1551-2916.2012.05184.x.
  33. Mo, B.H., Zhu, H., Cui, X.M., He, Y. and Gong, S.Y. (2014). "Effect of curing temperature on geopolymerization of metakaolin-based geopolymers". Appl., 99, 144-148. https://doi.org/10.1016/j.clay.2014.06.024.
  34. Moraes, J.C.B., Font, A., Soriano, L., Akasaki, J.L., Tashima, M.M., Monzo, J., ... and Paya, J. (2018), "New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator", Constr. Build. Mater., 171, 611-621. https://doi.org/10.1016/j.conbuildmat.2018.03.230.
  35. Nagaraj, V.K. and Babu Venkatesh, D.L. (2018), "Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature", J. Build. Eng., 20, 137-155. https://doi.org/10.1016/j.jobe.2018.07.005.
  36. Nourredine, G., Kerdal, D.E., Nouria, K. and Rachida, I. (2019), "Potential use of activated Algerian natural pozzolan powder as a cement replacement material", Eur. J. Environ. Civil Eng., 1-21. https://doi.org/10.1080/19648189.2018.1559241.
  37. Pacheco-Torgal, F., Castro-Gomes, J. and Jalali, S. (2008), "Alkali-activated binders: A review. Part 2. About materials and binders manufacture", Constr. Build. Mater., 22(7), 1315-1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019.
  38. Panias, D., Giannopoulou, I.P. and Perraki, T. (2007), "Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers", Coll. Surf. A, 301(1-3), 246-254. https://doi.org/10.1016/j.colsurfa.2006.12.064.
  39. Papa, E., Medri, V., Murri, A.N., Laghi, L., De Aloysio, G., Bandini, S. and Landi, E. (2018), "Characterization of alkali bonded expanded perlite", Constr. Build. Mater., 191, 1139-1147. https://doi.org/10.1016/j.conbuildmat.2018.10.086.
  40. Part, W.K., Ramli, M. and Cheah, C.B. (2015), "An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products", Constr. Build. Mater., 77, 370-395. https://doi.org/10.1016/j.conbuildmat.2014.12.065.
  41. Patil, A.A., Chore, H.S. and Dodeb, P.A. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. https://doi.org/10.12989/acc.2014.2.1.029.
  42. Provis, J.L. (2014), "Geopolymers and other alkali activated materials: why, how, and what?", Mater. Struct., 47(1-2), 11-25. https://doi.org/10.1617/s11527-013-0211-5.
  43. Provis, J.L. and Bernal, S.A. (2014), "Geopolymers and related alkali-activated materials", Ann. Rev. Mater. Res., 44, 299-327. https://doi.org/10.1146/annurev-matsci-070813-113515.
  44. Puertas, F., Amat, T., Fernandez-Jimenez, A. and Vazquez, T. (2003), "Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres", Cement Concrete Res., 33(12), 2031-2036. https://doi.org/10.1016/S0008-8846(03)00222-9.
  45. Ramezanianpour, A.A., Karein, S.M.M., Vosoughi, P., Pilvar, A., Isapour, S. and Moodi, F. (2014), "Effects of calcined perlite powder as a SCM on the strength and permeability of concrete", Constr. Build. Mater., 66, 222-228. https://doi.org/10.1016/j.conbuildmat.2014.05.086.
  46. Rattanasak, U. and Chindaprasirt, P. (2009), "Influence of NaOH solution on the synthesis of fly ash geopolymer", Miner. Eng., 22(12), 1073-1078. https://doi.org/10.1016/j.mineng.2009.03.022.
  47. Roy, D.M., Jiang, W. and Silsbee, M.R. (2000), "Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties", Cement Concrete Res., 30(12), 1879-1884. https://doi.org/10.1016/S0008-8846(00)00406-3.
  48. Saridemir, M. and Celikten, S. (2017), "The strength properties of alkali-activated silica fume mortars", Comput. Concrete, 19(2), 153-159. https://doi.org/10.12989/cac.2017.19.2.153.
  49. Saxena, S.K., Kumar, M. and Singh, N.B. (2017), "Influence of alkali solutions on properties of pond fly ash-based geopolymer mortar cured under different conditions", Adv. Cement Res., 30(1), 1-7. https://doi.org/10.1680/jadcr.17.00038.
  50. Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M.A. (2011), "Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete", Energ. Build., 43(2-3), 671-676. https://doi.org/10.1016/j.enbuild.2010.11.008.
  51. Shi, C. and Xie, P. (1998), "Interface between cement paste and quartz sand in alkali-activated slag mortars", Cement Concrete Res., 28(6), 887-896. https://doi.org/10.1016/S0008-8846(98)00050-7.
  52. Shi, C., Roy, D. and Krivenko, P. (2003), Alkali-Activated Cements and Concretes, CRC Press.
  53. Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P. and Chindaprasirt, P. (2011), "NaOH-activated ground fly ash geopolymer cured at ambient temperature", Fuel, 90(6), 2118-2124. https://doi.org/10.1016/j.fuel.2011.01.018.
  54. Taxiarchou, M., Panias, D., Panagiotopoulou, C., Karalis, A. and Dedeloudis, C. (2013), Study on the Suitability of Volcanic Amorphous Aluminosilicate Rocks (Perlite) for the Synthesis of Geopolymer-based Concrete, Geopolymer Binder Systems, ASTM International.
  55. Tchakoute, H.K., Elimbi, A., Yanne, E. and Djangang, C.N. (2013), "Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature", Cement Concrete Compos., 38, 75-81. https://doi.org/10.1016/j.cemconcomp.2013.03.010.
  56. Topcu, I.B. and ISikdag, B. (2007), "Manufacture of high heat conductivity resistant clay bricks containing perlite", Build. Environ., 42(10), 3540-3546. https://doi.org/10.1016/j.buildenv.2006.10.016.
  57. Topcu, I.B. and ISikdag, B. (2008), "Effect of expanded perlite aggregate on the properties of lightweight concrete", J. Mater. Proc. Technol., 204(1-3), 34-38. https://doi.org/10.1016/j.jmatprotec.2007.10.052.
  58. Turkish Standards European Norms (2009), Methods of testing cement-Part 1: Determination of strength, TS EN 196-1, Turkish Standards Institution, Ankara, Turkey.
  59. Vance, E.R., Perera, D.S., Imperia, P., Cassidy, D.J., Davis, J. and Gourley, J.T. (2009), "Perlite waste as a precursor for geopolymer formation", J Aust. Ceram Soc., 45, 44-49.
  60. Vaou, V. and Panias, D. (2010), "Thermal insulating foamy geopolymers from perlite", Miner. Eng., 23(14), 1146-1151. https://doi.org/10.1016/j.mineng.2010.07.015.
  61. Wang, S.D., Pu, X.C., Scrivener, K.L. and Pratt, P.L. (1995), "Alkali-activated slag cement and concrete: a review of properties and problems", Adv. Cement Res., 7(27), 93-102. https://doi.org/10.1680/adcr.1995.7.27.93.
  62. Wang, W.C., Wang, H.Y. and Lo, M.H. (2015), "The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration", Constr. Build. Mater., 84, 224-229. https://doi.org/10.1016/j.conbuildmat.2014.09.059.
  63. Yang, K.H. and Song, J.K. (2009), "Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide", J. Mater. Civil Eng., 21(3), 119-127. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:3(119).
  64. Yu, L.H., Ou, H. and Lee, L.L. (2003), "Investigation on pozzolanic effect of perlite powder in concrete", Cement Concrete Res., 33(1), 73-76. https://doi.org/10.1016/S0008-8846(02)00924-9.
  65. Zivica, V. (2007), "Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures", Constr. Build. Mater., 21(7), 1463-1469. https://doi.org/10.1016/j.conbu ildmat.2006.07.002.