DOI QR코드

DOI QR Code

ESR detection of optically-induced hyperpolarization of nitrogen vacancy centers in diamond

  • An, Min-Gi (Department of Chemistry, Korea Military Academy) ;
  • Shim, Jeong Hyun (Korea Research Institute of Standards and Science) ;
  • Kim, Kiwoong (Korea Research Institute of Standards and Science) ;
  • Oh, Sangwon (Korea Research Institute of Standards and Science) ;
  • Jeong, Keunhong (Department of Chemistry, Korea Military Academy)
  • Received : 2020.03.16
  • Accepted : 2020.03.17
  • Published : 2020.03.20

Abstract

Nitrogen vacancy center (NV center) in diamond has recently been appeared as a promising candidate for hyperpolarization applications due to its optical pumping property by laser. Optically Detected Magnetic Resonance (ODMR) has been used as a conventional method to obtain the resonance spectrum of NV centers. ODMR, however, has a shortcoming of sensitivity and a limitation of subjects, such that the degree of hyperpolarization can hardly be estimated, and that the spins other than NV centers are invisible. In contrast, Electron Spin Resonance (ESR) spectroscopy is known to proportionally reflect the degree of spin polarization. In this work, we successfully observed the optically-induced hyperpolarization of NV spins in diamond through CW-ESR spectroscopy with an X-band system. All the NV peaks were identified by calculating the eigenvalues of NV spin Hamiltonian. The intensities of NV peaks were enhanced over 240 times after optical pumping. The enhanced peaks corresponding to the transition from |ms=0> to |ms=-1> revealed inverted phases, while other peaks remained in-phase. The optically-induced hyperpolarization on NV spins can be a useful polarization source, leading to 13C nuclear hyperpolarization in diamond.

Keywords

References

  1. M. Pham, N. Bar-Gill, D. Le Sage, C. Belthangady, A. Stacey, M. Markham, D. J. Twitchen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. B 86, 121202 (2012) https://doi.org/10.1103/physrevb.86.121202
  2. K. Jeong, J. Kor. Magn. Reson. Soc. 20, 114 (2016) https://doi.org/10.6564/JKMRS.2016.20.4.114
  3. S. Oh, J. Kor. Magn. Reson. Soc. 23, 73 (2019)
  4. H. J. Lee and J. H. Shim, J. Kor. Magn. Reson. Soc. 22, 40(2018) https://doi.org/10.6564/JKMRS.2018.22.2.040
  5. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Annu. Rev. Phys. Chem. 65, 83 (2014) https://doi.org/10.1146/annurev-physchem-040513-103659
  6. B. Fortman and S. Takahashi, J. Phys. Chem. A 123, 6350 (2019) https://doi.org/10.1021/acs.jpca.9b02445
  7. J. D. Breeze, E. Salvadori, J. Sathian, N. M. Alford, and C. W. M. Kay, Nature 555, 493 (2018) https://doi.org/10.1038/nature25970
  8. J. W. Jeong, H. J. Kim, S. M. Kim, H. June, J. H. Yang, and Y. H. Choe, J. Kor. Magn. Reson. Soc. 20, 114 (2016) https://doi.org/10.6564/JKMRS.2016.20.4.114
  9. X. D. Chen, C. H. Dong, F. W. Sun, C. L. Zou, J. M. Cui, Z. F. Han, and G. C. Guo, Appl. Phys. Lett. 99, 161903 (2011) https://doi.org/10.1063/1.3652910
  10. M. Yang, Q. Yuan, J. Gao, S. Shu, F. Chen, H. Sun, K. Nishimura, S. Wang, J. Yi, C. Lin, and N. Jiang, Nanomaterials 9, 1576 (2019) https://doi.org/10.3390/nano9111576
  11. V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, Phys. Rev. Lett. 104, 070801 (2011) https://doi.org/10.1103/PhysRevLett.104.070801
  12. G. A. Alvarez, C. O. Bretschneider, R. Fischer, P. London, H. Kanda, S. Onoda, J. Isoya, D. Gershoni, and L. Frydman, Nat. Comm. 6, 9456 (2015)
  13. A. Ajoy, K. Liu, R. Nazaryan, X. Lv, P. R. Zangara, B. Safvati, G. Wang, D. Arnold, G. Li, A. Lin, P. Raghavan, E. Druga, S. Dhomkar, D. Pagliero, J. A. Reimer, D. Suter, C. A. Meriles, and A. Pines, Sci. Adv. 4, 5492 (2018)