References
- Beni, N.N and Dehkordi, M.B. (2018), "An extension of Carrera unified formulation in polar coordinate for analysis of circular sandwich plate with FGM core using GDQ method", Comp. Struct. 185, 41-434. https://doi.org/10.1016/j.compstruct.2017.11.044.
- Debowski D., Magnucki K. and Malinowski M. (2010), „Dynamic stability of a metal foam rectangular plate", Steel Compos. Struct., 10(2), 151-168. https://doi.org/10.12989/scs.2010.10.2.151.
- Ferreira, A.J.M., Roque, C.M.C. and Martins, P.A.L.S. (2003), "Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Comp. Part B Eng., 34(7), 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0.
- Feyzi, M.R. and Khorshidvand, A.R. (2017), "Axisymmetric postbuckling behavior of saturated porous circular plates", Thin-Walled Struct., 112, 149-158. https://doi.org/10.1016/j.tws.2016.11.026.
- Gunes, R. and Aydin, M. (2010), "Elastic response of functionally graded circular plates under a drop-weight", Compos. Struct., 92(10), 2445-2456. https://doi.org/10.1016/j.compstruct.2010.02.015.
- Jabbari, M., Mojahedin, A., Khorshidvand, A.R. and Eslami, M.R. (2014), "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech. -ASCE, 140(2), 287-295. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000663.
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001.
- Krivoshapko, S.N. (2007), "Research on general and axisymmetric ellipsoidal shells used as domes, Pressure vessels and tanks", Appl. Mech. Rev., 60(6), 336-355. https://doi.org/10.1115/1.2806278.
- Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin-Wall. Struct. 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006.
- Magnucka-Blandzi, E., Wisniewska-Mleczko, K. and Smyczynski, M.J. (2018), "Buckling of symmetrical circular sandwich plates with variable mechanical properties of the core in the radial direction", Compos. Struct. 204, 88-94. https://doi.org/10.1016/j.compstruct.2018.07.020.
- Magnucki, K. (2018), "Elastic buckling of a cylindrical panel with symmetrically varying mechanical properties - analytical study", Compos. Struct., 204, 217-222. https://doi.org/10.1016/j.compstruct.2018.07.073.
- Magnucki, K. and Lewinski, J. (2019), "Bending of beams with symmetrically varying mechanical properties under generalized load - shear effect", Eng. Trans., 67(3), 441-457. https://doi.10.24423/EngTrans.987.20190509.
- Magnucki, K., Szyc, W. and Lewinski, J. (2002), "Minimization of stress concentration factor in cylindrical pressure vessels with ellipsoidal heads", Int. J. Press. Vessel Pip., 79(12), 841-846. https://doi.org/10.1016/S0308-0161(02)00101-1.
- Magnucki, K., Witkowski, D. and Magnucka-Blandzi, E. (2019), "Buckling and free vibrations of rectangular plates with symmetrically varying mechanical properties - Analytical and FEM studies", Compos. Struct., 220, 355-361. https://doi.org/10.1016/j.compstruct.2019.03.082.
- Maturi, D.A., Ferreira, A.J.M., Zenkour, A.M. and Mashat, D.S. (2014), "Analysis of sandwich plates with a new layerwise formulation", Compos. Part B Eng., 56, 484-489. https://doi.org/10.1016/j.compositesb.2013.08.086.
- Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.
- Reddy, J.N. and Berry, J. (2012), "Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress", Compos. Struct., 94(12), 3664-3668. https://doi.org/10.1016/j.compstruct.2012.04.019.
- Sahraee, S. and Saidi, A.R. (2009), "Axisymmetric bending analysis of thick functionally graded circular plates using fourth-order shear deformation theory", Europ. J. Mech. -A/Solids, 28(5), 974-984. https://doi.org/10.1016/j.euromechsol.2009.03.009.
- Saidi, A.R., Rasouli, A. and Sahraee, S. (2009), "Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory", Compos. Struct., 89(1), 110-119. https://doi.org/10.1016/j.compstruct.2008.07.003.
- Shen, H.S. (2009), Functionally Graded Materials nonlinear analysis of plates and shells, CRC Press, Boca Raton, London, New York, USA.
- Sowinski, K. and Magnucki, K. (2018), "Shaping of dished heads of the cylindrical pressure vessel for diminishing of the edge effect", Thin-Wall. Struct., 131, 746-754. https://doi.org/10.1016/j.tws.2018.07.018.
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of plates and shells, (Second Edition), McGraw-Hill Book Company, Inc., New York, Toronto, London.
- Ventsel, E. and Krauthammer, T. (2001), Thin plates and shells. Theory, analysis, and applications, Marcel Dekker Inc., New York, Basel, USA.
- Wu, C.-P. and Liu, Y.-C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Comp. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
- Wu, C.P. and Yu, L.T. (2018), "Quasi-3D static analysis of twodirectional functionally graded circular plates", Steel Compos. Struct., 27(6), 89-801. https://doi.org/10.12989/scs.2018.27.6.789.
- Yun, W., Rongqiao, X. and Haojiang, D. (2010), "Threedimensional solution of axisymmetric bending of functionally graded circular plates", Compos. Struct., 92(7), 1683-1693. https://doi.org/10.1016/j.compstruct.2009.12.002.
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model. 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
- Zingoni, A. (2002), "Discontinuity effects at cone-cone axisymmetric shell junctions", Thin-Wall. Struct., 40(10), 877-891. https://doi.org/10.1016/S0263-8231(02)00022-8.
- Zingoni, A. (2002), "Parametric stress distribution in shell-ofrevolution sludge digesters of parabolic ogival form", Thin-Wall. Struct., 40(7-8), 691-702. https://doi.org/10.1016/S0263-8231(02)00020-4.
- Zingoni, A., Enoma, N. and Govender, N. (2015), "Equatorial bending of an elliptic toroidal shell", Thin-Wall. Struct., 96, 286-294. https://doi.org/10.1016/j.tws.2015.08.017.
- Zingoni, A., Mokhothu, B. and Enoma, N. (2015), "A theoretical formulation for the stress analysis of multi-segmented spherical shells for high-volume liquid containment", Eng. Struct., 87, 21-31. https://doi.org/10.1016/j.engstruct.2015.01.002.