DOI QR코드

DOI QR Code

Seismic response of bridge pier supported on rocking shallow foundation

  • Deviprasad, B.S. (Geotechnical Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras) ;
  • Dodagoudar, G.R. (Geotechnical Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras)
  • 투고 : 2019.09.20
  • 심사 : 2020.03.10
  • 발행 : 2020.04.10

초록

In the seismic design of bridges, formation of plastic hinges plays an important role in the dissipation of seismic energy. In the case of conventional fixed-base bridges, the plastic hinges are allowed to form in the superstructure alone. During seismic event, such bridges may be safe from collapse but the superstructure undergoes significant plastic deformations. As an alternative design approach, the plastic hinges are guided to form in the soil thereby utilizing the inevitable yielding of the soil. Rocking foundations work on this concept. The formation of plastic hinges in the soil reduces the load and displacement demands on the superstructure. This study aims at evaluating the seismic response of bridge pier supported on rocking shallow foundation. For this purpose, a BNWF model is implemented in OpenSees platform. The capability of the BNWF model to capture the SSI effects, nonlinear behavior and dynamic loading response are validated using the centrifuge and shake table test results. A comparative study is performed between the seismic response of the bridge pier supported on the rocking shallow foundation and conventional fixed-base foundation. Results of the study have established the beneficial effects of using the rocking shallow foundation for the seismic response analysis of the bridge piers.

키워드

참고문헌

  1. Allotey, N. and Naggar, M.H.E. (2003), "Analytical moment-rotation curves for rigid foundations based on a Winkler model", Soil Dyn. Earthq. Eng., 23(5), 367-381, https://doi.org/10.1016/S0267-7261(03)00034-4.
  2. Allotey, N. and Naggar, M.H.E. (2007), "An investigation into the winkler modeling of the cyclic response of rigid footings", Soil Dyn. Earthq. Eng., 28(1), 44-57, https://doi.org/10.1016/j.soildyn.2007.04.003.
  3. Amini, F., Bitaraf, M., Eskandari Nasab, M. and Javidan, M. (2018), "Impacts of soil-structure interaction on the structural control of nonlinear systems using adaptive control approach", Eng. Struct., 157, 1-13. https://doi.org/10.1016/j.engstruct.2017.11.071.
  4. Anastasopoulos, I., Gazetas, G., Loli, M., Apostolou, M. and Gerolymos, N. (2010), "Soil failure can be used for seismic protection of structures", Bull. Earthq. Eng., 8(2), 309-326, https://doi.org/10.1007/s10518-009-9145-2.
  5. Anastasopoulos, I., Loli, M., Georgarakos, T. and Drosos, V. (2013), "Shaking table testing of rocking-isolated bridge pier on sand", J. Earthq. Eng., 17(1), 1-32, https://doi.org/10.1080/13632469.2012.705225.
  6. Antonellis, G., Gavras, A.G., Panagiotou, M., Kutter, B.L., Guerrini, G., Sander, A, and Fox, P.J. (2015), "Shake table test of large-scale bridge columns supported on rocking shallow foundations", J. Geotech. Geoenviron. Eng., 141(5), 04015009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284.
  7. ATC 40 (1996), Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, Redwood City, California, U.S.A.
  8. Boulanger, R.W. (2000), The PySimple1, QzSimple1, and TzSimple1 Material Documentation, Document for the OpenSees platform. http://opensees.berkeley.edu.
  9. Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analyses", J. Geotech. Geoenviron. Eng., 125(9), 750-759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750).
  10. Butcher, G., Andrew, A. and Cleland, G. (1998), "The Edgecumbe earthquake", Centre for Advanced Engineering, University of Canterbury, Christchurch, New Zealand.
  11. Cakir, T. (2014), "Backfill and subsoil interaction effects on seismic behaviour of a cantilever wall", Geomech. Eng., 6(2), 117-138, http://doi.org/10.12989/gae.2014.6.2.117.
  12. CALTRANS (2010). Caltrans Seismic Design Criteria version 1.6, California Department of Transportation, Sacramento, California, U.S.A.
  13. Chatzigogos, C., Pecker, A. and Salencon, J. (2009), "Displacement-based design of shallow foundations with macroelement", Soils Found., 49(6), 853-869. https://doi.org/10.3208/sandf.49.853.
  14. Chopra, A.K. and Yim S.C. (1985), "Simplified earthquake analysis of structures with foundation uplift", J. Struct. Eng., 111(4), 906-930. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(906).
  15. Deng, L., Kutter, B.L. and Kunnath, S.K. (2012), "Centrifuge modeling of bridge systems designed for rocking foundations", J. Geotech. Geoenviron. Eng., 138(3), 335-344. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000605.
  16. Dobry, R. and Gazetas, G. (1986), "Dynamic response of arbitrarily shaped foundations", J. Geotech. Eng., 112(2), 109-135. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:2(109).
  17. Drosos, V., Georgarakos, T., Loli, M., Anastasopoulos, I., Zarzouras, O. and Gazetas, G. (2012), "Soil-foundation-structure interaction with mobilization of bearing capacity: Experimental study on sand", J. Geotech. Geoenviron. Eng., 138(11), 1369-1386. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000705.
  18. FEMA-356 (2000), Prestressed and Commentary for the Seismic Rehabilitation of Buildings, FEMA-356, Federal Emergency Management Agency, Washington, D.C., U.S.A.
  19. Gajan, S. and Kutter, B.L. (2008), "Numerical simulation of rocking behaviour of shallow footings and comparisons with experiments", Proceedings of the BGA International Conference on Foundations, Dundee, Scotland, June.
  20. Gajan, S., Phalen, J. and Kutter, B. (2003), "Soil-foundation structure interaction: shallow foundations. Centrifuge Data Report for the SSG02 Test Series" Data Report No. UCD/CGMDR-03/01, Center for Geotechnical Modeling, University of California, Davis, U.S.A.
  21. Gazetas, G. (1991), "Formulas and charts for impedances of surface and embedded foundations", J. Geotech. Eng., 117(9), 1363-1381. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363).
  22. Gerolymos, N., Giannakou, A., Anastasopoulos, I. and Gazetas, G. (2008), "Evidence of beneficial role of inclined piles: Observations and summary of numerical analyses", Bull. Earthq. Eng., 6(4), 705-722. https://doi.org/10.1007/s10518-008-9085-2.
  23. Gonzalez, F., Padron, L., Carbonari, S., Morici, M., Aznarez, J., Dezi, F. and Leoni, G. (2018), "Seismic response of bridge piers on pile groups for different soil damping models and lumped parameter representations of the foundation", Earthq. Eng. Struct. Dyn., 48(3), 306-327, https://doi.org/10.1002/eqe.3137.
  24. Harden, C., Hutchinson, T. and Moore, M. (2006), "Investigation into the effects of foundation uplift on simplified seismic design procedures", Earthq. Spectra, 22(3), 663-692. https://doi.org/10.1193/1.2217757
  25. Hassan, A. (2017), "Winkler model for pile seismic analysis considering end constraints effects", HBRC J., 14(3), 316-320, https://doi.org/10.1193/1.2217757.
  26. Herdrich, B. (2015), "Parametric study of rocking shallow foundations under seismic excitation" M.Sc. Project Report, Portland State University, Portland, U.S.A.
  27. Jamil, I. and Ahmad, I. (2019), "Bending moments in raft of a piled raft system using Winkler analysis", Geomech. Eng., 18(1), 41-48, http://doi.org/10.12989/gae.2019.18.1.041.
  28. Jiang, S., Du, C. and Sun, L. (2018), "Numerical analysis of sheet pile wall structure considering soil-structure interaction", Geomech. Eng., 16(3), 309-320. http://doi.org/10.12989/gae.2018.16.3.309.
  29. Karabork, T., Deneme, I.O. and Bilgehan, R.P. (2014), "A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil", Geomech. Eng., 7(1), 87-103, http://doi.org/10.12989/gae.2014.7.1.087.
  30. Kutter, B.L., Martin, G.R., Hutchinson, T., Harden, C., Gajan, S. and Phalen, J. (2006), "Workshop on modeling of nonlinear cyclic load-deformation behavior of shallow foundations", PEER workshop Report No. 2005/14, University of California Berkeley, U.S.A.
  31. Lee, J., Jeong. S. and Lee. J.K. (2015), "3D analytical method for mat foundations considering coupled soil springs", Geomech. Eng., 8(6), 845-850, http://doi.org/10.12989/gae.2015.8.6.845.
  32. Limkatanyu, S., Kwon, M., Prachasaree, W. and Chaiviriyawong, P. (2012), "Contact interface fiber section element: Shallow foundation modeling", Geomech. Eng., 4(3), 173-190. http://doi.org/10.12989/gae.2012.4.3.173.
  33. Mangalathu, S., Jeon, J.S. and Jiang, J.Q. (2019), Skew adjustment factors for fragilities of California box-girder bridges subjected to near-fault and far-field ground motions", J. Bridge Eng., 24(1), 04018109-1-13. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001338.
  34. Mangalathu, S., Jeon. J.S. and DesRoches, R. (2017), "Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression", Earthq. Eng. Struct. Dyn., 47(3), 784-801, https://doi.org/10.1002/eqe.2991.
  35. Novak, M. (1974), "Dynamic stiffness and damping of piles", Can. Geotech. J., 11(4), 574-598. https://doi.org/10.1139/t74-059.
  36. Paolucci, R. (1997), "Simplified evaluation of earthquake-induced permanent displacement of shallow foundations", J. Earthq. Eng., 1(3), 563-579. https://doi.org/10.1080/13632469708962378.
  37. Paolucci, R. and Pecker, A. (1997), "Seismic bearing capacity of shallow strip foundations on dry soils", Soils Found., 37(3), 95-105. https://doi.org/10.3208/sandf.37.3_95.
  38. Pecker, A. (2003), "Aseismic foundation design process, lessons learned from two major projects: the Vascode Gama and the Rion Antirion bridges", ACI International Conference on Seismic Bridge Design and Retrofit, University of California, San Diego, U.S.A.
  39. Pender, M.J. and Robertson, T.W. (1987), "Edgecumbe earthquake: Reconnaissance report", Bull. NZ Soc. Earthq. Eng., 20(3), 201-249. https://doi.org/10.1193/1.1585452.
  40. Raychowdhury, P. (2008), "Nonlinear Winkler-based shallow foundation model for performance assessment of seismically loaded structures", Ph.D. Thesis, University of California, San Diego, Califronia, U.S.A.
  41. Rosebrook, K.R. and Kutter, B.L. (2001), "Soil-foundation structure interaction: Shallow foundations. Centrifuge Data Report for the KRR03 Test Series", Data Report No. UCD/CGMDR-01/11, Center for Geotechnical Modeling, University of California, Davis, California, U.S.A.
  42. Taylor, P.W., Bartlett, P.E. and Weissing, P.R. (1981), "Foundation rocking under earthquake loading", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, June.
  43. Thomas, J.M., Gajan, S. and Kutter, B.L. (2005), "Soil-foundation structure interaction: Shallow foundations. Centrifuge Data Report for the SSG04 Test Series", Data Report No. UCD/CGMDR-05/02, Center for Geotechnical Modeling, University of California, Davis, California. U.S.A.
  44. Toh, J.C.W. and Pender, M.J. (2008), "Earthquake performance and permanent displacements of shallow foundations", Proceedings of the 2008 New Zealand Society for Earthquake Engineering Conference, Wairakei, New Zealand.
  45. Ulusay, R., Aydan, O. and Hamada, M. (2002), "The behaviour of structures built on active fault zones: Example from the recent earthquakes of Turkey", Struct. Eng. Earthq. Eng., 19(2), 149-167, https://doi.org/10.2208/jsceseee.19.149s.
  46. Veletsos, A. and Meek, J. (1974), "Dynamic behaviour of building-foundation systems", Earthq. Eng. Struct. Dyn., 3(2), 121-138, https://doi.org/10.1002/eqe.4290030203.
  47. Wolf, J. (1997), "Spring-dashpot-mass models for foundation vibrations", Earthq. Eng. Struct. Dyn., 26(9), 931-949. https://doi.org/10.1002/(SICI)1096-9845(199709)26:9<931::AID-EQE686>3.0.CO;2-M.
  48. Wolf, J. and Song, C. (2002), "Some cornerstones of dynamic soil-structure interaction", Eng. Struct., 24(1), 13-28, https://doi.org/10.1016/S0141-0296(01)00082-7.
  49. Zhang, J., Xie, Y. and Wu, G. (2018), "Seismic responses of bridges with rocking column-foundation: a dimensionless regression analysis", Earthq. Eng. Struct. Dyn., 48(1), 152-170, https://doi.org/10.1002/eqe.3129.