Acknowledgement
Supported by : National Research Foundation Korea (NRF)
This work was supported by the National Research Foundation Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2019R1A2C2007835 and No. 2017R1A5A1014883).
References
- Behrooz, M., Wang, X.J. and Gordaninejad, F. (2014a), "Modeling of a new semi-active/passive magnetorheological elastomer isolator", Smart Mater. Struct., 23(4), 045013. https://doi.org/10.1088/0964-1726/23/4/045013
- Behrooz, M., Wang, X.J. and Gordaninejad, F. (2014b), "Performance of a new magnetorheological elastomer isolation system", Smart Mater. Struct., 23(4), 045014. https://doi.org/10.1088/0964-1726/23/4/045014
- Chen, L., Gong, X.L., Jiang, W.Q., Yao, J.J., Deng, H.X. and Li, W.H. (2007), "Investigation on magnetorheological elastomers based on natural rubber", J. Mater. Sci., 42(14), 5483-5489. https://doi.org/10.1007/s10853-006-0975-x
- Chen, P.C., Hsu, S.C., Zhong, Y.J. and Wang, S.J. (2019), "Realtime hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. https://doi.org/10.12989/sss.2019.23.1.091
- Clutch, M.F. and Rabinow, J. (1948), "Technical News Bulletin", National Bureau of Standards, 32(4), 7.
- Davis, L.C. (1999), "Model of magnetorheological elastomers", J. Appl. Phys., 85(6), 3348-3351. https://doi.org/10.1063/1.369682
- Domizio, M.N., Ambrosini, D. and Curadelli, O. (2019), "TMD effectiveness in nonlinear RC structures subjected to near fault earthquakes", Smart Struct. Syst., Int. J., 24(4), 447-457. https://doi.org/10.12989/sss.2019.24.4.447
- Ginder, J.M., Nichols, M.E., Elie, L.D. and Clark, S.M. (2000), "Controllable-stiffness components based on magnetorheological elastomers", Proceedings of SPIE's 7th Annual International Symposium onsmart Structurs and Materials: Smart Structures and Integrated Systems, Newport Beach, CA, USA, March, 3985, 418-425. https://doi.org/10.1117/12.388844
- Jangid, R.S. and Kelly, J.M. (2001), "Base isolation for near-fault motions", Earthq. Eng. Struct. Dyn., 30(5), 691-707. https://doi.org/10.1002/eqe.31
- Jolly, M.R., Carlson, J.D. and Munoz, B.C. (1996), "A model of the behaviour of magnetorheological materials", Smart Mater. Struct., 5(5), 607-614. https://doi.org/10.1088/0964-1726/5/5/009
- Jung, H.J., Eem, S.H., Jang, D.D. and Koo, J.H. (2011), "Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers", J. Intel. Mater. Syst. Struct., 22(13), 1439-1450. https://doi.org/10.1177/1045389X11414224
- Lee, C.W. (2018), "Development of Smart Base Isolation System Based on MR Elastomer and Evaluation of Its Seismic Performance", Master's Thesis; Korea Advanced Institute of Science and Technology (KAIST), Korea.
- Lee, C.W., Kim, I.H. and Jung, H.J. (2018), "Fabrication and characterization of natural rubber-based magnetorheological elastomers at large strain for base isolators", Shock Vib., 7434536. https://doi.org/10.1155/2018/7434536
- Li, Y. and Li, J. (2019), "Overview of the development of smart base isolation system featuring magnetorheological elastomer", Smart Struct. Syst., Int. J., 24(1), 37-52. https://doi.org/10.12989/sss.2019.24.1.037
- Li, Y., Li, J., Li, W. and Samali, B. (2013), "Development and characterization of a magnetorheological elastomer based adaptive seismic isolator", Smart Mater. Struct., 22(3), 035005. https://doi.org/10.1088/0964-1726/22/3/035005
- Li, Y., Li, J., Li, W. and Du, H. (2014), "A state-of-the-art review on magnetorheological elastomer devices", Smart Mater. Struct., 23(12), 123001. https://doi.org/10.1088/0964-1726/23/12/123001
- Liao, G.J., Gong, X.L., Kang, C.J. and Xuan, S.H. (2011), "The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance", Smart Mater. Struct., 20(7), 075015. https://doi.org/10.1088/0964-1726/20/7/075015
- Lokander, M. and Stenberg, B. (2003), "Performance of isotropic magnetorheological rubber materials", Polym. Test., 22(3), 245-251. https://doi.org/10.1016/S0142-9418(02)00043-0
- Naeim, F. and Kelly, J.M. (1999), Design of Seismic Isolated Structures: from Theory to Practice, John Wiley & Sons.
- Nagarajaiah, S. (2006), "Structural control benchmark problem: Smart base isolated building subjected to near fault earthquakes", Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 13(2-3), 571-572. https://doi.org/10.1002/stc.98
- Nakashima, M. (2001), "Development, potential, and limitations of real-time online (pseudo-dynamic) testing", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1786), 1851-1867. https://doi.org/10.1098/rsta.2001.0876
- Opie, S. and Yim, W. (2011), "Design and control of a real-time variable modulus vibration isolator", J. Intel. Mater. Syst. Struct., 22(2), 113-125. https://doi.org/10.1177/1045389X10389204
- Park, Y.G., Ha, S.H., Seong, M.S., Jeon, J. and Choi, S.B. (2013), "Roller design of IRB Seismic Isolation Device Using Testing Evaluation: Part I. Geometry Dimension and Crowning", Transaction of the Korean Society for Noise and Vibration Engineering, 23(2), 185-191. https://doi.org/10.5050/KSNVE.2013.23.2.185
- Rabinow, J. (1951), "Magnetic fluid torque and force transmitting device", U.S. Patent No. 2,575,360.
- Ramallo, J.C., Johnson, E.A. and Spencer, B.F. (2002), ""Smart" base isolation systems", J. Eng. Mech., 128(10), 1088-1099. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1088)
- Ruddy, C., Ahearne, E. and Byme, G. (2012), "A review of magnetorheological elastomers: properties and applications", Advanced Manufacturing Science (AMS) Research, 20.
- Skineer, R.I., Robinson, W.H. and McVerry, G.H. (1993), An Introduction to Seismic Isolation, John Wiley & Sons.
- Son, I.C. (2008), "IRB System Used for Rollers to Protect Building from Earthquake", Computat. Struct. Eng., 21(4), 61-66.
- Tiong, P.L., Kelly, J.M. and Or, T.T. (2017), "Design approach of high damping rubber bearing for seismic isolation", Smart Struct. Syst., Int. J., 20(3), 303-309. https://doi.org/10.12989/sss.2017.20.3.303
- Wongprasert, N. and Symans, M.D. (2005), "Experimental evaluation of adaptive elastomeric base-isolated structures using variable-orifice fluid dampers", J. Struct. Eng., 131(6), 867-877. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(867)
- Yang, J., Sun, S.S., Tian, T.F., Li, W.H., Du, H.P., Alici, G. and Nakano, M. (2016), "Development of a novel multi-layer MRE isolator for suppression of building vibrations under seismic events", Mech. Syst. Signal Process., 70, 811-820. https://doi.org/10.1016/j.ymssp.2015.08.022
- Yoshioka, H., Ramallo, J.C. and Spencer, B.F. (2002), ""Smart" base isolation strategies employing magnetorheological dampers", J. Eng. Mech., 128(5), 540-551. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(540)
- Zhang, X.Z. and Li, W.H. (2009), "Adaptive tuned dynamic vibration absorbers working with MR elastomers", Smart Struct. Syst., Int. J., 5(5), 517-529. https://doi.org/10.12989/sss.2009.5.5.517
- Zhu, W. and Rui, X.T. (2014), "Semiactive vibration control using a magnetorheological damper and a magnetorheological elastomer based on the Bouc-Wen model", Shock Vib., 405421. https://doi.org/10.1155/2014/405421.
Cited by
- Performance enhancement of an MRE-based isolator using a multi-layered electromagnetic system vol.31, pp.1, 2020, https://doi.org/10.1088/1361-665x/ac3c69