Acknowledgement
Supported by : National Natural Science Foundation of China
The authors would like to acknowledge financial support from the National Natural Science Foundation of China (Project No. 51578431).
References
- Aguiar, R.A.A., Savi, M.A. and Pacheco, P.M.C.L. (2010), "Experimental and numerical investigations of shape memory alloy helical springs", Smart Mater. Struct., 19(2). https://doi.org/10.1088/0964-1726/19/2/025008
- An, Y.H., Jo, H.K., Spencer Jr., B.F. and Ou, J.P. (2014), "A damage localization method based on the 'jerk energy'", Smart Mater. Struct., 23(2). https://doi.org/10.1088/0964-1726/23/2/025020
- Bae, J.S., Kwak, M.K. and Inman, D.J. (2005), "Vibration suppression of a cantilever beam using eddy current damper", J. Sound Vib., 284(3-5), 805-824. https://doi.org/10.1016/j.jsv.2004.07.031
- Boyd, J.G. and Lagoudas, D.C. (1996), "A thermodynamical constitutive model for shape memory materials: part I. The monolithic shape memory alloy", Int. J. Plasticity, 12(6), 805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
- Carreras, G., Casciati, F. and Casciati, S. (2010), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., Int. J., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
- Casciati, F. and Faravelli, L. (2009), "A passive control device with SMA components: from the prototype to the model", Struct. Control Hlth., 16(7-8), 751-765. https://doi.org/10.1002/stc.328
- Casciati, F. and van der Eijk, C. (2008), "Variability in mechanical properities and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., Int. J., 4(2), 103-121. https://doi.org/103-121,10.12989/sss.2008.4.2.103
- Casciati, F. and Wu, L.J. (2012), "Local positioning accuracy of laser sensors for structural health monitoring", Struct. Control Hlth., 20(5), 728-739. https://doi.org/10.1002/stc.1488
- Casciati, F., Faravelli, L. and Hamdaoui, K. (2007), "Performance of a base isolator with shape memory alloy bars", Earthq. Eng. Eng. Vib., 6(4), 401-408. https://doi.org/10.1007/s11803-007-0787-2
- Casciati, S. Faravelli, L. and Vece, M. (2016), "Investigation on the fatigue performance of Ni-Ti thin wires", Struct. Control Health Monit., 24(1). https://doi.org/10.1002/stc.1855
- De Domenico, D. and Ricciardi, G. (2018), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011
- Enemark, S., Santos, I.F. and Savi, M.A. (2016), "Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs", J. Intel. Mat. Syst. Struct., 27(20), 2721-2743. https://doi.org/10.1177/1045389X16635845
- Friedman, A.J., Dyke, S.J. and Phillips, B.M. (2013), "Over-driven control for large-scale MR dampers", Smart Mater. Struct., 22(4). https://doi.org/10.1088/0964-1726/22/4/045001
- Gu, H. and Song, G.B. (2007), "Active vibration suppression of a flexible beam with piezoceramic patches using robust model reference control", Smart Mater. Struct., 16(4), 1453-1459. https://doi.org/10.1088/0964-1726/16/4/060
- Hashemi, Y.M., Kadkhodaei, M. and Mohammadzadeh, M.R. (2019), "Fatigue analysis of shape memory alloy helical springs", Int. J. Mech. Sci., 161. https://doi.org/10.1016/j.ijmecsci.2019.105059
- Hayashi, K., Skalomenos, K.A. and Inamasu, H. (2018), "Selfcentering rocking composite frame using double-skin concretefilled steel tube columns and energy-dissipating fuses in multiple locations", J. Stuct. Eng., 144(9). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002157
- Huang, B., Zhang H.Y. and Wang, H. (2014), "Passive base isolation with superelastic Nitinol SMA helical springs", Smart Mater. Struct., 23(6). https://doi.org/10.1088/0964-1726/23/6/065009
- Huang, Z.W., Hua, X.G. and Chen, Z.Q. (2018a), "Modeling, testing, and validation of an eddy current damper for structural vibration control", J. Aerospace Eng., 31(5). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000891
- Huang, B., Lao, Y.M. and Chen, J.M. (2018b), "Dynamic response analysis of a frame structure with superelastic nitinol SMA helical spring braces for vibration reduction", J. Aerosp. Eng., 31(6). https://doi.org/10.1061/(asce)as.1943-5525.0000923
- Huang, B., Lv, H.W. and Song, Y. (2019), "Numerical simulation and experimental study of a simplified force-displacement relationship in superelastic SMA helical springs", Sensors, 19(1). https://doi.org/10.3390/s19010050
- Kim, J., Ryu, J. and Chung, L. (2006), "Seismic performance of structures connected by viscoelastic dampers", Eng. Struct., 28(2), 183-195. https://doi.org/10.1016/j.engstruct.2005.05.014
- Kundu, P., Nath, T. and Palani, I.A. (2018), "Integrating GLLWeibull distribution within a Bayesian framework for life prediction of shape memory alloy spring undergoing thermomechanical fatigue", J. Mater. Eng. Perform, 27(7). https://doi.org/10.1007/s11665-018-3435-2
- Mishra, S.K., Gur, S. and Chakraborty, S. (2013), "An improved tuned mass damper (SMA-TMD) assisted by a shape memory alloy spring", Smart Mater. Struct., 22(9). https://doi.org/10.1088/0964-1726/22/9/095016
- Motahari, S.A. and Ghassemieh, M. (2007), "Multilinear onedimensional shape memory material model for use in structural engineering applications", Eng. Struct., 29(6), 904-913. https://doi.org/10.1016/j.engstruct.2006.06.007
- Patil, D. and Song, G.B. (2016), "Shape memory alloy actuated accumulator for ultra-deepwater oil and gas exploration", Smart Mater. Struct., 25. https://doi.org/10.1088/0964-1726/25/4/045012
- Qian, H., Li, H.N. and Song, G.B. (2016), "Experimental investigations of building structure with a superelastic shape memory alloy friction damper subject to seismic loads", Smart Mater. Struct., 25(12). https://doi.org/10.1088/0964-1726/25/12/125026
- Ren, W.X., Li, H.N. and Song, G.B. (2007), "A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys", Smart Mater. Struct, 16(1), 191-197. https://doi.org/10.1088/0964-1726/16/1/023
- Saadat, S., Salichs, J. and Noori, M. (2002), "An overview of vibration and seismic applications of NiTi shape memory alloy", Smart Mater. Struct., 11(2), 218-229. https://doi.org/0964-1726/11/2/305 https://doi.org/10.1088/0964-1726/11/2/305
- Sedlak, P., Frost, M. and Kruisova, A. (2014), "Simulations of mechanical response of superelastic NiTi helical spring and its relation to fatigue resistance", J. Mater. Eng. Perform., 23(7), 2591-2598. https://doi.org/10.1007/s11665-014-0906-y
- Song, G., Ma, N. and Penny, N. (2004), "Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators", Smart. Struct. Syst., Int. J., 7(1), 1-13. https://doi.org/10.1088/0964-1726/16/4/048
- Song, G., Ma, N. and Li, H.N. (2006a), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
- Song, G., Mo, Y.L. and Otero, K. (2006b), "Health monitoring and rehabilitation of a concrete structure using intelligent materials", Smart Mater. Struct., 15(2), 309-314. https://doi.org/10.1088/0964-1726/15/2/010
- Sun, W.Q. (2011), "Seismic response control of high arch dams including contraction joint using nonlinear super-elastic SMA damper", Constr. Build. Mater., 25(9), 3762-3767. https://doi.org/10.1016/j.conbuildmat.2011.04.013
- Wang, W.X., Hua, X.G. and Wang, X.Y. (2018a), "Numerical modeling and experimental study on a novel pounding tuned mass damper", J. Vib. Control, 24(17). https://doi.org/10.1177/1077546317718714
- Wang, W.X., Wang, X.Y. and Hua, X.G. (2018b), "Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper", Eng. Struct., 173, 61-75. https://doi.org/10.1016/j.engstruct.2018.06.099
- Wang, S.J., Chiu, I.C. and Yu, C.H. (2019), "Experimental beyond design and residual performances of full-scale viscoelastic dampers and their empirical modeling", Earthq. Eng. Struct. Dyn., 48(10), 1093-1111. https://doi.org/10.1002/eqe.3170
- Xu, M.B. and Song, G. (2004), "Adaptive control of vibration wave propagation in cylindrical shells using SMA wall joint", J. Sound Vib., 278(1-2), 307-326. https://doi.org/10.1016/j.jsv.2003.10.029
- Yang, Q.S., Lu, X.Z. and Yu, C. (2017), "Experimental study and finite element analysis of energy dissipating outriggers", Adv. Struct. Eng., 20(8), 1196-1209. https://doi.org/10.1177/1369433216677122
- Yoshida, O. and Dyke, S.J. (2004), "Seismic control of a nonlinear benchmark building using smart dampers", J. Eng. Mech., 130(4), 386-392. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(386)
- Zapateiro, M., Karimi, H.R. and Luo, N. (2009), "Real-time hybrid testing of semiactive control strategies for vibration reduction in a structure with MR damper", Struct. Control Health, 17(4), 427-451. https://doi.org/10.1002/stc.321
- Zhang, P., Song, G. and Li, H.N. (2012), "Seismic control of power transmission tower using pounding TMD", J. Eng. Mech. -ASCE, 139(10), 1395-1406. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000576
- Zhou, H., Li, J. and Spencer Jr., B.F. (2019), "Multiscale random fields-based damage modeling and analysis of concrete structures", J. Eng. Mech., 145(7). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001618