DOI QR코드

DOI QR Code

Parametric study of SMA helical spring braces for the seismic resistance of a frame structure

  • Ding, Jincheng (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Huang, Bin (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Lv, Hongwang (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Wan, Hongxia (School of Civil Engineering and Architecture, Wuhan University of Technology)
  • Received : 2019.10.03
  • Accepted : 2019.12.31
  • Published : 2020.03.25

Abstract

This paper studies the influence of parameters of a novel SMA helical spring energy dissipation brace on the seismic resistance of a frame structure. The force-displacement relationship of the SMA springs is established mathematically based on a multilinear constitutive model of the SMA material. Four SMA helical springs are fabricated, and the force-displacement relationship curves of the SMA springs are obtained via tension tests. A numerical dynamic model of a two-floor frame with spring energy dissipation braces is constructed and evaluated via vibration table tests. Then, two spring parameters, namely, the ratio of the helical spring diameter to the wire diameter and the pre-stretch length, are selected to investigate their influences on the seismic responses of the frame structure. The simulation results demonstrate that the optimal ratio of the helical spring diameter to the wire diameter can be found to minimize the absolute acceleration and the relative displacement of the frame structure. Meanwhile, if the pre-stretch length is assigned a suitable value, excellent vibration reduction performance can be realized. Compared with the frame structure without braces, the frames with spring braces exhibit highly satisfactory seismic resistance performance under various earthquake waves. However, it is necessary to select an SMA spring with optimal parameters for realizing optimal vibration reduction performance.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

The authors would like to acknowledge financial support from the National Natural Science Foundation of China (Project No. 51578431).

References

  1. Aguiar, R.A.A., Savi, M.A. and Pacheco, P.M.C.L. (2010), "Experimental and numerical investigations of shape memory alloy helical springs", Smart Mater. Struct., 19(2). https://doi.org/10.1088/0964-1726/19/2/025008
  2. An, Y.H., Jo, H.K., Spencer Jr., B.F. and Ou, J.P. (2014), "A damage localization method based on the 'jerk energy'", Smart Mater. Struct., 23(2). https://doi.org/10.1088/0964-1726/23/2/025020
  3. Bae, J.S., Kwak, M.K. and Inman, D.J. (2005), "Vibration suppression of a cantilever beam using eddy current damper", J. Sound Vib., 284(3-5), 805-824. https://doi.org/10.1016/j.jsv.2004.07.031
  4. Boyd, J.G. and Lagoudas, D.C. (1996), "A thermodynamical constitutive model for shape memory materials: part I. The monolithic shape memory alloy", Int. J. Plasticity, 12(6), 805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
  5. Carreras, G., Casciati, F. and Casciati, S. (2010), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., Int. J., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
  6. Casciati, F. and Faravelli, L. (2009), "A passive control device with SMA components: from the prototype to the model", Struct. Control Hlth., 16(7-8), 751-765. https://doi.org/10.1002/stc.328
  7. Casciati, F. and van der Eijk, C. (2008), "Variability in mechanical properities and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., Int. J., 4(2), 103-121. https://doi.org/103-121,10.12989/sss.2008.4.2.103
  8. Casciati, F. and Wu, L.J. (2012), "Local positioning accuracy of laser sensors for structural health monitoring", Struct. Control Hlth., 20(5), 728-739. https://doi.org/10.1002/stc.1488
  9. Casciati, F., Faravelli, L. and Hamdaoui, K. (2007), "Performance of a base isolator with shape memory alloy bars", Earthq. Eng. Eng. Vib., 6(4), 401-408. https://doi.org/10.1007/s11803-007-0787-2
  10. Casciati, S. Faravelli, L. and Vece, M. (2016), "Investigation on the fatigue performance of Ni-Ti thin wires", Struct. Control Health Monit., 24(1). https://doi.org/10.1002/stc.1855
  11. De Domenico, D. and Ricciardi, G. (2018), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011
  12. Enemark, S., Santos, I.F. and Savi, M.A. (2016), "Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs", J. Intel. Mat. Syst. Struct., 27(20), 2721-2743. https://doi.org/10.1177/1045389X16635845
  13. Friedman, A.J., Dyke, S.J. and Phillips, B.M. (2013), "Over-driven control for large-scale MR dampers", Smart Mater. Struct., 22(4). https://doi.org/10.1088/0964-1726/22/4/045001
  14. Gu, H. and Song, G.B. (2007), "Active vibration suppression of a flexible beam with piezoceramic patches using robust model reference control", Smart Mater. Struct., 16(4), 1453-1459. https://doi.org/10.1088/0964-1726/16/4/060
  15. Hashemi, Y.M., Kadkhodaei, M. and Mohammadzadeh, M.R. (2019), "Fatigue analysis of shape memory alloy helical springs", Int. J. Mech. Sci., 161. https://doi.org/10.1016/j.ijmecsci.2019.105059
  16. Hayashi, K., Skalomenos, K.A. and Inamasu, H. (2018), "Selfcentering rocking composite frame using double-skin concretefilled steel tube columns and energy-dissipating fuses in multiple locations", J. Stuct. Eng., 144(9). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002157
  17. Huang, B., Zhang H.Y. and Wang, H. (2014), "Passive base isolation with superelastic Nitinol SMA helical springs", Smart Mater. Struct., 23(6). https://doi.org/10.1088/0964-1726/23/6/065009
  18. Huang, Z.W., Hua, X.G. and Chen, Z.Q. (2018a), "Modeling, testing, and validation of an eddy current damper for structural vibration control", J. Aerospace Eng., 31(5). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000891
  19. Huang, B., Lao, Y.M. and Chen, J.M. (2018b), "Dynamic response analysis of a frame structure with superelastic nitinol SMA helical spring braces for vibration reduction", J. Aerosp. Eng., 31(6). https://doi.org/10.1061/(asce)as.1943-5525.0000923
  20. Huang, B., Lv, H.W. and Song, Y. (2019), "Numerical simulation and experimental study of a simplified force-displacement relationship in superelastic SMA helical springs", Sensors, 19(1). https://doi.org/10.3390/s19010050
  21. Kim, J., Ryu, J. and Chung, L. (2006), "Seismic performance of structures connected by viscoelastic dampers", Eng. Struct., 28(2), 183-195. https://doi.org/10.1016/j.engstruct.2005.05.014
  22. Kundu, P., Nath, T. and Palani, I.A. (2018), "Integrating GLLWeibull distribution within a Bayesian framework for life prediction of shape memory alloy spring undergoing thermomechanical fatigue", J. Mater. Eng. Perform, 27(7). https://doi.org/10.1007/s11665-018-3435-2
  23. Mishra, S.K., Gur, S. and Chakraborty, S. (2013), "An improved tuned mass damper (SMA-TMD) assisted by a shape memory alloy spring", Smart Mater. Struct., 22(9). https://doi.org/10.1088/0964-1726/22/9/095016
  24. Motahari, S.A. and Ghassemieh, M. (2007), "Multilinear onedimensional shape memory material model for use in structural engineering applications", Eng. Struct., 29(6), 904-913. https://doi.org/10.1016/j.engstruct.2006.06.007
  25. Patil, D. and Song, G.B. (2016), "Shape memory alloy actuated accumulator for ultra-deepwater oil and gas exploration", Smart Mater. Struct., 25. https://doi.org/10.1088/0964-1726/25/4/045012
  26. Qian, H., Li, H.N. and Song, G.B. (2016), "Experimental investigations of building structure with a superelastic shape memory alloy friction damper subject to seismic loads", Smart Mater. Struct., 25(12). https://doi.org/10.1088/0964-1726/25/12/125026
  27. Ren, W.X., Li, H.N. and Song, G.B. (2007), "A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys", Smart Mater. Struct, 16(1), 191-197. https://doi.org/10.1088/0964-1726/16/1/023
  28. Saadat, S., Salichs, J. and Noori, M. (2002), "An overview of vibration and seismic applications of NiTi shape memory alloy", Smart Mater. Struct., 11(2), 218-229. https://doi.org/0964-1726/11/2/305 https://doi.org/10.1088/0964-1726/11/2/305
  29. Sedlak, P., Frost, M. and Kruisova, A. (2014), "Simulations of mechanical response of superelastic NiTi helical spring and its relation to fatigue resistance", J. Mater. Eng. Perform., 23(7), 2591-2598. https://doi.org/10.1007/s11665-014-0906-y
  30. Song, G., Ma, N. and Penny, N. (2004), "Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators", Smart. Struct. Syst., Int. J., 7(1), 1-13. https://doi.org/10.1088/0964-1726/16/4/048
  31. Song, G., Ma, N. and Li, H.N. (2006a), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
  32. Song, G., Mo, Y.L. and Otero, K. (2006b), "Health monitoring and rehabilitation of a concrete structure using intelligent materials", Smart Mater. Struct., 15(2), 309-314. https://doi.org/10.1088/0964-1726/15/2/010
  33. Sun, W.Q. (2011), "Seismic response control of high arch dams including contraction joint using nonlinear super-elastic SMA damper", Constr. Build. Mater., 25(9), 3762-3767. https://doi.org/10.1016/j.conbuildmat.2011.04.013
  34. Wang, W.X., Hua, X.G. and Wang, X.Y. (2018a), "Numerical modeling and experimental study on a novel pounding tuned mass damper", J. Vib. Control, 24(17). https://doi.org/10.1177/1077546317718714
  35. Wang, W.X., Wang, X.Y. and Hua, X.G. (2018b), "Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper", Eng. Struct., 173, 61-75. https://doi.org/10.1016/j.engstruct.2018.06.099
  36. Wang, S.J., Chiu, I.C. and Yu, C.H. (2019), "Experimental beyond design and residual performances of full-scale viscoelastic dampers and their empirical modeling", Earthq. Eng. Struct. Dyn., 48(10), 1093-1111. https://doi.org/10.1002/eqe.3170
  37. Xu, M.B. and Song, G. (2004), "Adaptive control of vibration wave propagation in cylindrical shells using SMA wall joint", J. Sound Vib., 278(1-2), 307-326. https://doi.org/10.1016/j.jsv.2003.10.029
  38. Yang, Q.S., Lu, X.Z. and Yu, C. (2017), "Experimental study and finite element analysis of energy dissipating outriggers", Adv. Struct. Eng., 20(8), 1196-1209. https://doi.org/10.1177/1369433216677122
  39. Yoshida, O. and Dyke, S.J. (2004), "Seismic control of a nonlinear benchmark building using smart dampers", J. Eng. Mech., 130(4), 386-392. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(386)
  40. Zapateiro, M., Karimi, H.R. and Luo, N. (2009), "Real-time hybrid testing of semiactive control strategies for vibration reduction in a structure with MR damper", Struct. Control Health, 17(4), 427-451. https://doi.org/10.1002/stc.321
  41. Zhang, P., Song, G. and Li, H.N. (2012), "Seismic control of power transmission tower using pounding TMD", J. Eng. Mech. -ASCE, 139(10), 1395-1406. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000576
  42. Zhou, H., Li, J. and Spencer Jr., B.F. (2019), "Multiscale random fields-based damage modeling and analysis of concrete structures", J. Eng. Mech., 145(7). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001618