DOI QR코드

DOI QR Code

Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation

  • Liu, Peipei (Department of Civil and Environmental Engineering, Korean Advanced Institute for Science and Technology) ;
  • Jang, Jinho (Department of Civil and Environmental Engineering, Korean Advanced Institute for Science and Technology) ;
  • Sohn, Hoon (Department of Civil and Environmental Engineering, Korean Advanced Institute for Science and Technology)
  • 투고 : 2019.10.30
  • 심사 : 2019.12.27
  • 발행 : 2020.03.25

초록

The laser ultrasonic technique is gaining popularity for nondestructive evaluation (NDE) applications because it is a noncontact and couplant-free method and can inspect a target from a remote distance. For the conventional laser ultrasonic techniques, a pulsed laser is often used to generate broadband ultrasonic waves in a target structure. However, for crack detection using nonlinear ultrasonic modulation, it is necessary to generate narrowband ultrasonic waves. In this study, a pulsed laser is shaped into dual-line arrays using a spatial mask and used to simultaneously excite narrowband ultrasonic waves in the target structure at two distinct frequencies. Nonlinear ultrasonic modulation will occur between the two input frequencies when they encounter a fatigue crack existing in the target structure. Then, a nonlinear damage index (DI) is defined as a function of the magnitude of the modulation components and computed over the target structure by taking advantage of laser scanning. Finally, the fatigue crack is detected and localized by visualizing the nonlinear DI over the target structure. Numerical simulations and experimental tests are performed to examine the possibility of generating narrowband ultrasonic waves using the spatial mask. The performance of the proposed fatigue crack localization technique is validated by conducting an experiment with aluminum plates containing real fatigue cracks.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1C1C1009493), and also a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A3B3067987).

참고문헌

  1. An, Y.K., Park, B. and Sohn, H. (2013a), "Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate", Smart Mater. Struct., 22(2), 025022. https://doi.org/10.1088/0964-1726/22/2/025022.
  2. An, Y.K., Kwon, Y. and Sohn, H. (2013b), "Noncontact laser ultrasonic crack detection for plates with additional structural complexities", Struct. Health Monit., 12(5-6), 522-538. https://doi.org/10.1177/1475921713500515
  3. Baldwin, K.C., Berndt, T.P. and Ehrlich, M.J. (1999), "Narrowband laser generation/air-coupled detection: Ultrasonic system for on-line process control of composites", Ultrasonics, 37(5), 329-334. https://doi.org/10.1016/S0041-624X(99)00011-6
  4. Davies, S., Edwards, C., Taylor, G. and Palmer, S.B. (1993), "Laser-generated ultrasound: Its properties, mechanisms and multifarious applications", J. Phys. D Appl. Phys., 26(3), 329-348. https://doi.org/10.1088/0022-3727/26/3/001
  5. Deaton Jr, J., McKie, A., Spicer, J. and Wagner, J. (1990), "Generation of narrow‐band ultrasound with a long cavity mode‐locked Nd: YAG laser", Appl. Phys. Lett., 56(24), 2390-2392. https://doi.org/10.1063/1.102925
  6. Dewhurst, R.J., Edwards, C., McKie, A.D.W. and Palmer, S.B. (1988), "A remote laser system for ultrasonic velocity measurement at high temperatures", J. Appl. Phys., 63(4), 1225-1227. https://doi.org/10.1063/1.339987
  7. Dixon, S., Burrows, S., Dutton, B. and Fan, Y. (2011), "Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection", Ultrasonics, 51(1), 7-16. https://doi.org/10.1016/j.ultras.2010.05.002
  8. Huang, J., Krishnaswamy, S. and Achenbach, J.D. (1992), "Laser generation of narrow‐band surface waves", J. Acoust. Soc. Amer., 92(5), 2527-2531. https://doi.org/10.1121/1.404422
  9. Hurley, D.C., Tewary, V.K. and Richards, A.J. (2001), "Thin-film elastic-property measurements with laser-ultrasonic SAW spectrometry", Thin Solid Films, 398-399, 326-330. https://doi.org/10.1016/S0040-6090(01)01338-4
  10. Jhang, K.Y. (2009), "Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review", International J. Precis. Eng. Manuf., 10(1), 123-135. https://doi.org/10.1007/s12541-009-0019-y
  11. Lim, H.J. and Sohn, H. (2017), "Necessary conditions for nonlinear ultrasonic modulation generation given a localized fatigue crack in a plate-like structure", Materials, 10(3), 248. https://doi.org/10.3390/ma10030248
  12. Lim, H.J., Sohn, H. and Liu, P. (2014), "Binding conditions for nonlinear ultrasonic generation unifying wave propagation and vibration", Appl. Phys. Lett., 104(21), 214103. https://doi.org/10.1063/1.4879836
  13. Lim, H.J., Song, B., Park, B. and Sohn, H. (2015), "Noncontact fatigue crack visualization using nonlinear ultrasonic modulation", NDT & E Int., 73, 8-14. https://doi.org/10.1016/ j.ndteint.2015.03.002
  14. Lim, H.J., Kim, Y., Sohn, H., Jeon, I. and Liu, P. (2017), "Reliability improvement of nonlinear ultrasonic modulation based fatigue crack detection using feature-level data fusion", Smart Struct. Syst., Int. J., 20(6), 683-696. https://doi.org/10.12989/ sss.2017.20.6.683
  15. Liu, P. and Sohn, H. (2016), "Numerical simulation of damage detection using laser-generated ultrasound", Ultrasonics, 69, 248-258. https://doi.org/10.1016/j.ultras.2016.03.013
  16. Liu, P., Yang, S., Lim, H.J., Park, H.C., Ko, I.C. and Sohn, H. (2014), "Development of a wireless nonlinear wave modulation spectroscopy (NWMS) sensor node for fatigue crack detection", Proceedings of SPIE, Vol. 9064, 906406, San Diego, CA, USA.
  17. Liu, P., Sohn, H. and Park, B. (2015), "Baseline-free damage visualization using noncontact laser nonlinear ultrasonics and state space geometrical changes", Smart Mater. Struct., 24(6), 065036. https://doi.org/10.1088/0964-1726/24/6/065036
  18. Liu, P., Jang, J., Yang, S. and Sohn, H. (2018), "Fatigue crack detection using dual laser induced nonlinear ultrasonic modulation", Opt. Laser Eng., 110, 420-430. https://doi.org/10.1016/j.optlaseng.2018.05.025
  19. Mezil, S., Chigarev, N., Tournat, V. and Gusev, V. (2016), "Evaluation of crack parameters by a nonlinear frequencymixing laser ultrasonics method", Ultrasonics, 69, 225-235. https://doi.org/10.1016/j.ultras.2016.04.005
  20. Mikesell, T., van Wijk, K., Otheim, L., Marshall, H.P. and Kurbatov, A. (2017), "Laser ultrasound observations of mechanical property variations in ice cores", Geosciences, 7(3), 47-65. https://doi.org/10.3390/geosciences7030047
  21. Monchalin, J.P., Aussel, J.D., Heon, R., Jen, C., Boudreault, A. and Bernier, R. (1989), "Measurement of in-plane and out-of-plane ultrasonic displacements by optical heterodyne interferometry", J. Nondestruct. Eval., 8(2), 121-133. https://doi.org/10.1007/BF00565636
  22. Murray, T., Deaton Jr, J. and Wagner, J. (1996), "Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources", Ultrasonics, 34(1), 69-77. https://doi.org/10.1016/0041-624X(95)00090-P
  23. Noroy, M.H., Royer, D. and Fink, M. (1995), "Shear-wave focusing with a laser-ultrasound phased-array", IEEE Trans. Ultrason. Ferroelect. Freq. Control, 42(6), 981-988. https://doi.org/10.1109/58.476540
  24. Park, B., Sohn, H., Yeum, C.M. and Truong, T.C. (2013), "Laser ultrasonic imaging and damage detection for a rotating structure", Struct. Health Monit., 12(5-6), 494-506. https://doi.org/10.1177/1475921713507100
  25. Park, B., Sohn, H., Malinowski, P. and Ostachowicz, W. (2017), "Delamination localization in wind turbine blades based on adaptive time-of-flight analysis of noncontact laser ultrasonic signals", Nondestruct. Testing Eval., 32(1), 1-20. https://doi.org/10.1080/10589759.2015.1130828
  26. Pierce, S., Culshaw, B. and Shan, Q. (1998), "Laser generation of ultrasound using a modulated continuous wave laser diode", Appl. Phys. Lett., 72(9), 1030-1032. https://doi.org/10.1063/1.120955
  27. Pistone, E., Li, K. and Rizzo, P. (2013), "Noncontact monitoring of immersed plates by means of laser-induced ultrasounds", Struct. Health Monit., 12(5-6), 549-565. https://doi.org/10.1177/ 1475921713506767.
  28. Prada, C., Balogun, O. and Murray, T. (2005), "Laser-based ultrasonic generation and detection of zero-group velocity Lamb waves in thin plates", Appl. Phys. Lett., 87(19), 194109. https://doi.org/10.1063/1.2128063
  29. Saito, T., Matsuda, O., Tomoda, M. and Wright, O.B. (2010), "Imaging gigahertz surface acoustic waves through the photoelastic effect", J. Opt. Soc. Amer. B, 27(12), 2632-2638. https://doi.org/10.1364/JOSAB.27.002632
  30. Scruby, C.B. and Drain, L.E. (1990), Laser Ultrasonics Techniques and Applications, CRC Press, Boca
  31. Raton, FL, USA. Sohn, H., Park, H.W., Law, K.H. and Farrar, C.R. (2007), "Combination of a time reversal process and a consecutiv outlier analysis for baseline-free damage diagnosis", J. Intell. Mater. Syst. and Struct., 18(4), 335-346. https://doi.org/10.1177/1045389X0606629
  32. Staszewski, W., Lee, B., Mallet, L. and Scarpa, F. (2004), "Structural health monitoring using scanning laser vibrometry: I. Lamb wave sensing", Smart Mater. Struct., 13(2), 251-260. https://doi.org/10.1088/0964-1726/13/2/002
  33. Staszewski, W., Lee, B. and Traynor, R. (2007), "Fatigue crack detection in metallic structures with lamb waves and 3D laser vibrometry", Meas. Sci. Technol., 18(3), 727. https://doi.org/10.1088/0957-0233/18/3/024
  34. van den Abeele, K.A., Johnson, P.A. and Sutin, A. (2000), "Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS)", J. Res. Nondestruct. Eval., 12(1), 17-30. https://doi.org/10.1080/09349840009409646
  35. Wagner, J.W., McKie, A.D., Spicer, J.B. and Deaton, J.B. (1990), "Modulated laser array sources for generation of narrowband and directed ultrasound", J. Nondestruct. Eval., 9(4), 263-270. https://doi.org/10.1007/BF00565644
  36. Xu, B., Shen, Z., Ni, X. and Lu, J. (2004), "Numerical simulation of laser-generated ultrasound by the finite element method", J.Appl. Phys., 95(4), 2116-2122. https://doi.org/10.1063/1.1637712
  37. Yang, J., Liu, P., Yang, S., Lee, H. and Sohn, H. (2015), "Laser based impedance measurement for pipe corrosion and boltloosening detection", Smart Struct. Syst., Int. J., 15(1), 41-55. https://doi.org/10.12989/sss.2015.15.1.041
  38. Yashiro, S., Takatsubo, J., Miyauchi, H. and Toyama, N. (2008), "A novel technique for visualizing ultrasonic waves in general solid media by pulsed laser scan", NDT & E Int., 41(2), 137-144. https://doi.org/10.1016/j.ndteint.2007.08.002
  39. Yim, H.J., Park, S.J., Kim, J.H. and Kwak, H.G. (2016), "Evaluation of freezing and thawing damage of concrete using a nonlinear ultrasonic method", Smart Struct. Syst., Int. J., 17(1), 45-58. https://doi.org/10.12989/sss.2016.17.1.045
  40. Zaitsev, V.Y., Matveev, L. and Matveyev, A. (2009), "On the ultimate sensitivity of nonlinear-modulation method of crack detection", NDT & E Int., 42(7), 622-629. https://doi.org/10.1016/j.ndteint.2009.05.001