DOI QR코드

DOI QR Code

Non-local orthotropic elastic shell model for vibration analysis of protein microtubules

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Majeed, Afnan (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad) ;
  • Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Ahmad, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khan, Hidayat Ullah (Department of Mathematics, University of Malakand at Chakdara) ;
  • Tounsi, Abdelouahed (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Algeria Faculty of Technology Civil Engineering Department)
  • 투고 : 2020.02.06
  • 심사 : 2020.02.29
  • 발행 : 2020.03.25

초록

Vibrational analysis in microtubules is examined based on the nonlocal theory of elasticity. The complete analytical formulas for wave velocity are obtained and the results reveal that the small scale effects can reduce the frequency, especially for large longitudinal wave-vector and large circumferential wave number. It is seen that the small scale effects are more significant for smaller wave length. The methods and results may also support the design and application of nano devices such as micro sound generator etc. The effects of small scale parameters can increase vibrational frequencies of the protein microtubules and cannot be overlooked in the analysis of vibrating phenomena. The results for different modes with nonlocal effect are checked.

키워드

과제정보

The author(s) received no financial support for the research, authorship, and/or publication of this article.

참고문헌

  1. An, L. and Gao, Y. (2010), "Mechanics behavior of microtubules based on nonlocal anisotropic shell theory", IOP Conference Series: Materials Science and Engineering, 10(1), 012181. doi:10.1088/1757-899X/10/1/012181.
  2. Asghar, S., Hussain, M. and Naeem, M. (2019), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J. Physica E: Low Dimens. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726.
  3. Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479.
  4. Asghar, S., Naeem, M.N., Hussain, M. and Tounsi, A. (2020), "Nonlocal vibration of DWCNTs based on Flugge shell model using wave propagation approach", Steel Compos. Struct., 34(4), 599-613. https://doi.org/10.12989/scs.2020.34.4.599.
  5. Ansari, R. and Arash, B. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/10.1115/1.4007432.
  6. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  7. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  8. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.
  9. Boal, D. (2012), Mechanics of the Cell, Cambridge University Press, New York, Cambridge, UK.
  10. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  11. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., ... and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443.
  12. Civalek, O., Demir, C. and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298. https://doi.org/10.3390/mca15020289.
  13. Civalek, O. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Press. Ves. Pip., 83(1), 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005.
  14. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034. 0 096-30.
  15. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
  16. de Pablo, P.J., Schaap, I.A., MacKintosh, F.C. and Schmidt, C.F. (2003), "Deformation and collapse of microtubules on the nanometer scale", Phys. Rev. Lett., 91(9), 098101. https://doi.org/10.1103/PhysRevLett.91.098101.
  17. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media.
  18. Esmaeili, J. and Andalibia, K. (2019), "Development of 3D Meso-Scale finite element model to study the mechanical behavior of steel microfiber-reinforced polymer concrete", Comput. Concrete, 24(5), 413-422. https://doi.org/10.12989/cac.2019.24.5.413.
  19. Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.
  20. Fernandez, J.D. and Vico, F.J. (2011)., "Automating the search of molecular motor templates by evolutionary methods", Biosyst., 106(2-3), 82-93. https://doi.org/10.1016/j.biosystems.2011.07.002.
  21. Gao, Y. and An, L. (2010)., "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E: Low Dimens. Syst. Nanostruct., 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022.
  22. Gao, Y. and Lei, F.M. (2009, "Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory", Biochem. Biophys. Res. Commun., 387(3), 467-471. https://doi.org/10.1016/j.bbrc.2009.07.042.
  23. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  24. Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120(4), 923-934. https://doi.org/10.1083/jcb.120.4.923.
  25. Hussain, M., Naeem, M.N. and Tounsi, A. (2020d), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res. (in Press)
  26. Hussain, M., Naeem, M.N. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube based on Relagh-Ritz Method".
  27. Hussain, M. and Naeem, M.N. (2020a), "Mass density effect on vibration of zigzag and chiral SWCNTs", J. Sandw. Struct. Mater., 1099636220906257. https://doi.org/10.1177/1099636220906257.
  28. Hussain, M. and Naeem, M.N. (2020b), "Vibration characteristics of zigzag FGM single-walled carbon nanotubes based on Ritz method with ring-stiffeners", Ind. J. Phys., 140, 85-98. https://doi.org/10.1016/j.tws.2019.03.018.
  29. Hussain, M., Naeem, M.N. and Tounsi, A, (2020c), "Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Constr., 9(3). (in Press)
  30. Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled Fluid-filled cylindrical shell", Adv. Comput. Des. (in Press)
  31. Hussain, M. and Naeem, M. (2019d), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  32. Hussain, M. and Naeem, M. (2018a), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Chapter 5, Intechopen, Novel Nanomaterials - Synthesis and Applications, ISBN 978-953-51-5896-7. https://doi.org/10.5772/intechopen.73503.
  33. Hussain, M. and Naeem, M. (2019a), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality", Perspective of Carbon Nanotubes, IntechOpen. https://doi.org/10.5772/intechopen.85948.
  34. Hussain, M. and Naeem, M.N. (2018b), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Chapter 3, Intechopen, Advance Testing and Engineering, ISBN 978-953-51-6706-8, Intechopen.
  35. Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos.: Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  36. Hussain, M. and Naeem, M.N. (2019c), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.
  37. Hussain, M., Naeem, M., Shahzad, A. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Chapter 14, Intechopen, Computational Fluid Dynamics, ISBN 978-953-51-5706-9. https://doi.org/10.5772/intechopen.72172.
  38. Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459.
  39. Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309.
  40. Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320.
  41. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity",. Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  42. Hussain, M. and Naeem., M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.
  43. Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
  44. Heireche, H., Tounsi, A., Benhassaini, H., Benzair, A., Bendahmane, M., Missouri, M. and Mokadem, S. (2010). "Nonlocal elasticity effect on vibration characteristics of protein microtubules"., Physica E: Low Dimens. Syst. Nanostruct., 42(9), 2375-2379. https://doi.org/10.18720/MPM.4022018_19.
  45. Howard, J. (2001), Mechanics of Motor Proteins and the Cytoskeleton, 384.
  46. Ishida, T., Thitamadee, S. and Hashimoto, T. (2007), " Twisted growth and organization of cortical microtubules", J. Plant Res., 120(1), 61-70. https://doi.org/10.1007/s10265-006-0039-y.
  47. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
  48. Janosi, I.M., Chretien, D. and Flyvbjerg, H. (2002)., "Structural microtubule cap: Stability, catastrophe, rescue, andthird state", Biophys. J., 83(3), 1317-1330. https://doi.org/10.1016/S0006-3495(02)73902-7.
  49. Kasas, S., Cibert, C., Kis, A., De Rios, P.L., Riederer, B., Forro, L.,... Catsicas, S. (2004), "Oscillation modes of microtubules", Biol. Cell, 96(9), 697-700. https://doi.org/10.1016/j.biolcel.2004.09.002.
  50. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
  51. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  52. Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
  53. Needleman, D.J., Ojeda-Lopez, M.A., Raviv, U., Ewert, K., Miller, H.P., Wilson, L. and Safinya, C.R. (2005), "Radial compression of microtubules and the mechanism of action of taxol and associated proteins", Biophys. J., 89(5), 3410-3423. https://doi.org/10.1529/biophysj.104.057679.
  54. Nogales, E. (2001), "Structural insights into microtubule function", Ann. Rev. Biophys. Biomolecul. Struct., 30(1), 397-420. https://doi.org/10.1146/annurev.biophys.30.1.397.
  55. Qian, X., Zhang, J. and Ru, C. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573.
  56. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018)., "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  57. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.33.6.805.
  58. Sehar. A., Hussain M., Naeem M.N and Tounsi. A. (2020), "Prediction and assessment of nolocal natural frequencies DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  59. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 0954406219888234. https://doi.org/10.1177/0954406219888234.
  60. Sofiyev, A.H., Avcar, M., Ozyigit, P. and Adigozel, S. (2009), "The free vibration of non-homogeneous truncated conical shells on a Winkler foundation", Int. J. Eng. Appl. Sci., 1(1), 34-41.
  61. Sofiyev, A.H., Yucel, K., Avcar, M. and Zerin, Z. (2006), "The dynamic stability of orthotropic cylindrical shells with non-homogenous material properties under axial compressive load varying as a parabolic function of time", J. Reinf. Plast. Compos., 25(18), 1877-1886. https://doi.org/10.1177/0731684406069914.
  62. Tohidi, H., Hosseini-Hashemi, S.H., Maghsoudpour, A. and Etemadi, S. (2017), "Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field", Wind Struct., 25(2), 131-156. https://doi.org/10.12989/was.2017.25.2.131.
  63. Shaw, M.K., Compton, H.L., Roos, D.S. and Tilney, L.G. (2000), "Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii", J. Cell Sci., 113(7), 1241-1254. https://doi.org/10.1242/jcs.021089.
  64. Shen, H.S. (2010).,"Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model", J. Theo. Biol., 264(2), 386-394. https://doi.org/10.1016/j.jtbi.2010.02.014.
  65. Tuszynski, J., Luchko, T., Portet, S. and Dixon, J. (2005), "Anisotropic elastic properties of microtubules", The European Phys. J. E, 17(1), 29-35. https://doi.org/10.1140/epje/i2004-10102-5.
  66. Wang, C., Ru, C. and Mioduchowski, A. (2006a), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/physreve.74.052901.
  67. Wang, C., Ru, C. and Mioduchowski, A. (2006b), "Vibration of microtubules as orthotropic elastic shells", Physica E: Low Dimens. Syst. Nanostruct., 35(1), 48-56. https://doi.org/10.1155/2014/591532.
  68. Wang, C. and Zhang, L. (2008), "Circumferential vibration of microtubules with long axial wavelength", J. Biomech., 41(9), 1892-1896. https://doi.org/10.1016/j.jbiomech.2008.03.029.
  69. Wang, J. and Gao, Y. (2016)., "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Math. Model., 40(11-12), 5731-5744. doi: 10.1016/j.apm.2016.01.013.
  70. Wang, Y.A. and Carter, E.A. (2002). "Orbital-free kinetic-energy density functional theory", Theoretical Methods in Condensed Phase Chemistry, 117-184, Springer.
  71. Yazdani, R. and Mohammadimehr, M. (2019). "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.
  72. Zou, R. and Foster, C. (1995) "Simple solution for buckling of orthotropic circular cylindrical shells", Thin Wall. Struct., 22(3), 143-158. https://doi.org/10.1155/2008/685805.
  73. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.

피인용 문헌

  1. Investigation of Mechanical Numerical Simulation and Expansion Experiment of Expandable Liner Hanger in Oil and Gas Completion vol.2020, 2020, https://doi.org/10.1155/2020/9375835
  2. Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.343
  3. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2020, https://doi.org/10.12989/sem.2021.77.1.057
  4. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.025
  5. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2020, https://doi.org/10.12989/sem.2021.77.2.217
  6. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.175