DOI QR코드

DOI QR Code

Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory

  • Rahmani, Mohammed Cherif (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Kaci, Abdelhakim (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bedia, E.A. Adda (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
  • Received : 2020.01.06
  • Accepted : 2020.02.29
  • Published : 2020.03.25

Abstract

The influence of boundary conditions on the bending and free vibration behavior of functionally graded sandwich plates resting on a two-parameter elastic foundation is examined using an original novel high order shear theory. The Hamilton's principle is used herein to derive the equations of motion. The number of unknowns and governing equations of the present theory is reduced, and hence makes it simple to use. This theory includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Unlike any other theory, the number of unknown functions involved in displacement field is only four, as against five, six or more in the case of other shear deformation theories. Galerkin's approach is utilized for FGM sandwich plates with six different boundary conditions. The accuracy of the proposed solution is checked by comparing it with other closed form solutions available in the literature.

Keywords

References

  1. Abdelaziz, H.H., Meziane, M.A.A, Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  2. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: A micromechanical approach", Iran J. Sci. Technol. Tran. Mech. Eng., 43, 61-73. https://doi.org/10.1007/s40997-017-0140-y.
  3. Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
  4. Abdou, M.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2019), "Exact solutions of generalized thermoelastic medium with double porosity under L-S theory", Ind. J. Phys., 1-12. https://doi.org/10.1007/s12648-019-01505-8.
  5. Abrate S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B: Eng., 39, 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026.
  6. Akbas S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  7. Akbas, S.D (2019a), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
  8. Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107.
  9. Akbas, S.D. (2019b), "Forced vibration analysis of functionally graded sandwich deep beams", Couple. Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
  10. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Mainten., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  11. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
  12. Alasadi, A.A., Ahmed, R.A. and Faleh, N.M. (2019), "Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities", Adv. Aircraf. Spacecraf. Sci., 6(4), 273-282. https://doi.org/10.12989/aas.2019.6.4.273.
  13. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
  14. Arefi, M. (2015), "The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers", Smart Struct. Syst., 15, 1345-1362. https://doi.org/10.12989/sss.2015.15.5.1345.
  15. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  16. Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Brazil Soc. Mech. Sci. Eng., 42(1), 33. https://doi.org/10.1007/s40430-019-2118-8.
  17. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraf. Spacecraf. Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
  18. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
  19. Benferhat, R., HassaineDaouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  20. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  21. Bensattalah, T., Zidour, M. and Hassaine Daouadji, T. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.
  22. Cooke, D.W. and Levinson, M. (1983), "Thick rectangular plates-II, the generalized Levy solution", Int. J. Mech. Sci., 25(3), 207-215. https://doi.org/10.1016/0020-7403(83)90094-2.
  23. Darilmaz, K. (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., 18, 395-408. https://doi.org/10.12989/scs.2015.18.2.395.
  24. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  25. Ebrahimi, F. and Barati, M.R. (2017a), "Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads", J. Vib. Control, 107754631773408. https://doi.org/10.1177/1077546317734083.
  26. Ebrahimi, F. and Barati, M.R. (2017b), "Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams", Wave. Random Complex Media, 28(2), 326-342. https://doi.org/10.1080/17455030.2017.1346331.
  27. Ebrahimi, F. and Barati, M.R. (2019), "A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets", Iran J. Sci. Technol. Tran. Mech. Eng., 43, 205-220. https://doi.org/10.1007/s40997-017-0131-z.
  28. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  29. Eltaher, M.A., Agwa, M. and Kabeel, A (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136.
  30. Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013.
  31. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40, 141. https://doi.org/10.1007/s40430-018-1065-0.
  32. Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020), "Static stability of a unified composite beams under varying axial loads", Thin Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  33. Eltaher, M.A., Wagih, A., Melaibari, A., Fathy, A. and Lubineau, G. (2019), "Effect of $Al_2O_3$ particles on mechanical and tribological properties of Al-Mg dual-matrix nanocomposites", Ceram. Int., 46(5), 5779-5787. https://doi.org/10.1016/j.ceramint.2019.11.028.
  34. Fadoun, O.O., Borokinni, A.S., Layeni, O.P. and Akinola, A.P. (2017), "Dynamics analysis of a transversely isotropic non-classical thin plate", Wind Struct., 25(1), 25-38. https://doi.org/10.12989/was.2017.25.1.025.
  35. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  36. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupl. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  37. Ghorbanpour, A.A., Cheraghbak, A. and Kolahchi, R. (2016), "Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory", Struct. Eng. Mech., 60, 489-505. https://doi.org/10.12989/sem.2016.60.3.489.
  38. Giunta, G., Belouettar, S. and Ferreira, A.J.M. (2016), "A static analysis of three-dimensional functionally graded beams by hierarchical modelling and a collocation meshless solution method", Acta Mechanica, 227(4), 969-991. https://doi.org/10.1007/s00707-015-1503-3.
  39. Goldsmith, W., Wang, G., Li, K. and Crane, D. (1997), "Perforation of cellular sandwich plates", Int. J. Impact Eng., 19(5-6), 361-379. https://doi.org/10.1016/S0734-743X(97)00003-1.
  40. Haciyev, V.C., Sofiyev, A.H. and Kuruoglu, N. (2018), "Free bending vibration analysis of thin bidirectionally exponentially graded orthotropic rectangular plates resting on two-parameter elastic foundations", Compos. Struct., 184, 372-377. https://doi.org/10.1016/j.compstruct.2017.10.014.
  41. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  42. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373. https://doi.org/10.1177/1099636217720373.
  43. Hamed, M.A., Salwa, A., Mohamed, S.A., Mohamed, A. and Eltaher, M.A, (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  44. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  45. He, X.Q., Ng, T.Y., Sivashanker, S. and Liew, K.M. (2001), "Active control of FGM plates with integrated piezoelectric sensors and actuators", Int. J. Solid. Struct., 38, 1641-1655. https://doi.org/10.1016/S0020-7683(00)00050-0.
  46. Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B: Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  47. Jha, D.K., Kant, T. and Singh, R.K. (2012), "Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates", Nucl. Eng. Des., 250, 8-13. https://doi.org/10.1016/j.nucengdes.2012.05.001.
  48. Kar, V.R. and Panda, S.K. (2015a), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006.
  49. Kar, V.R. and Panda, S.K. (2015b), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661.
  50. Kar, V.R. and Panda, S.K. (2015c), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  51. Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical behavior of functionally graded material Cylindrical/Hyperbolic/Elliptical shell panel with temperature-dependent and temperature-independent properties", J. Press. Ves. Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701.
  52. Kar, V.R. and Panda, S.K. (2017), "Large-amplitude vibration of functionally graded Doubly-Curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.j055878.
  53. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4),1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011.
  54. Katariya, P., Panda, S. and Mahapatra, T. (2018), "Bending and vibration analysis of skew sandwich plate", Aircraf. Eng. Aerosp. Technol., 90(6), 885-895. https://doi.org/10.1108/AEAT-05-2016-0087.
  55. Katariya, P.V. and Panda, S.K. (2019a), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.
  56. Katariya, P.V. and Panda, S.K. (2019b), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
  57. Katariya, P.V., Hirwani, C.K. and Panda, S.K. (2019), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35, 467-485. https://doi.org/10.1007/s00366-018-0609-3.
  58. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Prediction of nonlinear eigenfrequency of laminated curved sandwich structure using higher-order equivalent single-layer theory", J. Sandw. Struct. Mater., 109963621772842. https://doi.org/10.1177/1099636217728420.
  59. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2020), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 22(1), 3-27. https://doi.org/10.1177/1099636217731071.
  60. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  61. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017a), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  62. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  63. Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded T-joints", Wind Struct., 29(5), 361-369. https://doi.org/10.12989/was.2019.29.5.361.
  64. Lee, K.H., Lim, G.T. and Wang, C.M. (2002), "Thick Levy plates revisited", Int. J. Solid. Struct., 39, 127-144. https://doi.org/10.1016/S0020-7683(01)00205-0
  65. Liu, Y. (2011), "A refined shear deformation plate theory", Int. J. Comput. Meth. Eng. Sci. Mech., 12, 141-149. https://doi.org/10.1080/15502287.2011.564267.
  66. Majeed, W.I. and Abdul Kareem Abed, Z. (2019)," Buckling and pre-stressed dynamics analysis of laminated composite plate with different boundary conditions", Al-Khwarizmi Eng. J., 15(1), 46-55. https://doi.org/10.22153/kej.2019.07.002.
  67. Majeed, W.I. and Ghani, R.A. (2017), "Free vibration analysis of laminated composite plates with general elastic boundary supports", J. Eng., 23(4),100-124.
  68. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  69. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  70. Merdaci, S., Tounsi, A., Houari, M.S.A., Mechab, I., Hebali, H. and Benyoucef, S. (2011), "Two new refined shear displacement models for functionally graded sandwich plates", Arch. Appl. Mech., 81(11), 1507-1522. https://doi.org/10.1007/s00419-010-0497-5.
  71. Mirjavadi, S.S., Forsat, M., Nikookar, M., Barati, M.R. and Hamouda, A.M.S. (2019b), "Nonlinear forced vibrations of sandwich smart nanobeams with two-phase piezo-magnetic face sheets", Eur. Phys. J. Plus., 134, 508. https://doi.org/10.1140/epjp/i2019-12806-8.
  72. Mohamed, N., Mohamed, A., Eltaher, M.A., Mohamed, S.A and Seddek. L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  73. Mouli, C.B., Ramji, K., Kar, V.R., Panda, S.K., Anil, L.K. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527.
  74. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N., MotaSoares, C.M. and Araujo, A.L. (2017), "Influence of zig-zag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories", Mech. Adv. Mater. Struct., 24(5), 360-376. https://doi.org/10.1080/15376494.2016.1191095.
  75. Nguyen-Xuan, H., Thai, C.H. and Nguyen-Thoi, T. (2013), "Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory", Compos. Part B: Eng., 55, 558-574. https://doi.org/10.1016/j.compositesb.2013.06.044.
  76. Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P.A., Nguyen Xuan, H. and Vo, T.P. (2017), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Meth. Appl. Mech. Eng., 313, 904-940. https://doi.org/10.1016/j.cma.2016.10.002.
  77. Nguyen, N.D., Nguyen, T.K., Nguyen, T.N. and Thai, H.T. (2018), "New Ritz-solution shape functions for analysis of thermo-mechanical buckling and vibration of laminated composite beams", Compos. Struct., 184, 452-460. https://doi.org/10.1016/j.compstruct.2017.10.003.
  78. Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Meth. Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.
  79. Nguyen, V.H, Nguyen, T.K., Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. Part B: Eng., 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012.
  80. Othman, M.I.A. and Lotfy, K. (2009), "Two-dimensional problem of generalized Magneto-Thermoelasticity with temperature dependent elastic moduli for different theories", Multidisc. Model. Mater. Struct., 5(3), 235-242. https://doi.org/10.1163/157361109789016961.
  81. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.
  82. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-Art", Trend. Civil Eng. Arch., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  83. Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53, 337-354. https://doi.org/10.12989/sem.2015.53.2.337.
  84. Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of func-tionally graded ceramic-metal plates", Int. J. Solid. Struct., 35, 4457-4471. https://doi.org/10.1016/S0020-7683(97)00253-9.
  85. Radford, D.D., Fleck, N.A. and Deshpande, V.S. (2006), "The response of clamped sandwich beams subjected to shock loading", Int. J. Impact Eng., 32(6), 968-987. https://doi.org/10.1016/j.ijimpeng.2004.08.007.
  86. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
  87. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.
  88. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  89. Reddy, J.N., Wang, C.M., Lim, G.T. and Ng, K.H. (2001), "Bending solutions of Levinson beams and plates in terms of the classical theories", Int. J. Solid. Struct., 38(26-27), 4701-4720. https://doi.org/10.1016/S0020-7683(00)00298-5.
  90. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  91. Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
  92. Sedighi, H.M. and Shirazi, K.H. (2012), "A new approach to analytical solution of cantilever beam vibration with nonlinear boundary condition", J. Comput. Nonlin. Dyn., 7(3), 034502. https://doi.org/10.1115/1.4005924.
  93. Sedighi, H.M. and Shirazi, K.H. (2013), "Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method", Acta Astronautica, 85, 19-24. https://doi.org/10.1016/j.actaastro.2012.11.014.
  94. Sedighi, H.M., Keivani, M. and Abadyan, M. (2015), "Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect", Compos. Part B: Eng., 83, 117-133. https://doi.org/10.1016/j.compositesb.2015.08.029.
  95. Sedighi, H.M., Shirazi, K.H. and Attarzadeh, M.A. (2013), "A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches", Acta Astronautica, 91, 245-250. https://doi.org/10.1016/j.actaastro.2013.06.018.
  96. Sedighi, H.M., Shirazi, K.H. and Zare, J. (2012a), "Novel equivalent function for deadzone nonlinearity: applied to analytical solution of beam vibration using He's Parameter Expanding Method", Lat. Am. J. Solid. Struct., 9(4), 443-452. https://doi.org/10.1590/s1679-78252012000400002.
  97. Sedighi, H.M., Shirazi, K.H., Reza, A. and Zare, J. (2012b), "Accurate modeling of preload discontinuity in the analytical approach of the nonlinear free vibration of beams", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 226(10), 2474-2484. https://doi.org/10.1177/0954406211435196.
  98. Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
  99. Shahadat, M.R.B., Alam, M.F., Mandal, M.N.A. and Ali, M.M. (2018), "Thermal transportation behaviour prediction of defective graphene sheet at various temperature: A Molecular Dynamics Study", Am. J. Nanomater., 6(1), 34-40. https://doi.org/10.12691/ajn-6-1-4.
  100. Sharma, J.N., Chand, R. and Othman, M.I.A. (2009), "On the propagation of Lamb waves in viscothermoelastic plates under fluid loadings", Int. J. Eng. Sci., 47(3), 391-404. https://doi.org/10.1016/j.ijengsci.2008.10.008.
  101. Shi, G. (2007), "A new simple third-order shear deformation theory of plates", Int. J. Solid. Struct., 44, 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031.
  102. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  103. Thai, C.H., Ferreira, A., Bordas, S., Rabczuk, T. and Nguyen-Xuan, H. (2014), "Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory", Eur. J. Mech.-A/Solid., 43, 89-108. https://doi.org/10.1016/j.euromechsol.2013.09.001.
  104. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29, 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  105. Woo, J., Meguid, S.A. and Ong, L.S. (2006), "Nonlinear free vibration behavior of functionally graded plates", J. Sound Vib., 289, 595-611. https://doi.org/10.1016/j.jsv.2005.02.031.
  106. Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.
  107. Yuksela, Y.Z. and Akbas, S.D. (2018), "Free vibration analysis of a Cross-Ply laminated plate in thermal environment", Int. J. Eng. Appl. Sci. (IJEAS)., 10(3), 176-189. http://dx.doi.org/10.24107/ijeas.456755.
  108. Yuksela, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/jcamech.2019.291967.448.
  109. Zenkour, A.M. and Radwan, A.F. (2018), "Compressive study of functionally graded plates resting on Winkler-Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory", Arch. Civil Mech. Eng., 18, 645-658. https://doi.org/10.1016/j.acme.2017.10.003.
  110. Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44, 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016.
  111. Zhou, Y., Wang, Q., Shi, D., Liang, Q. and Zhang, Z. (2017), "Exact solutions for the free in-plane vibrations of rectangular plates with arbitrary boundary conditions", Int. J. Mech. Sci., 130, 1-10. https://doi.org/10.1016/j.ijmecsci.2017.06.004.
  112. Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177.

Cited by

  1. Nonlinear Static Bending and Free Vibration Analysis of Bidirectional Functionally Graded Material Plates vol.2020, 2020, https://doi.org/10.1155/2020/8831366
  2. A Spline Finite Point Method for Nonlinear Bending Analysis of FG Plates in Thermal Environments Based on a Locking-free Thin/Thick Plate Theory vol.2020, 2020, https://doi.org/10.1155/2020/2943705
  3. Free Vibration and Static Bending Analysis of Piezoelectric Functionally Graded Material Plates Resting on One Area of Two-Parameter Elastic Foundation vol.2020, 2020, https://doi.org/10.1155/2020/9236538
  4. Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
  5. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2020, https://doi.org/10.12989/amr.2020.9.4.265
  6. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  7. In-Line and Cross-Flow Coupling Vibration Response Characteristics of a Marine Viscoelastic Riser Subjected to Two-Phase Internal Flow vol.2021, 2020, https://doi.org/10.1155/2021/7866802
  8. Study on the Dynamic Performance of Locally Resonant Plates with Elastic Unit Cell Edges vol.2021, 2021, https://doi.org/10.1155/2021/5541052
  9. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2020, https://doi.org/10.12989/sem.2021.77.1.057
  10. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.025
  11. Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator vol.77, pp.2, 2021, https://doi.org/10.12989/sem.2021.77.2.167
  12. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2020, https://doi.org/10.12989/sem.2021.77.2.217
  13. Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2020, https://doi.org/10.12989/sem.2021.77.3.315
  14. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.175
  15. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2020, https://doi.org/10.12989/csm.2021.10.1.061
  16. Vibration behavior of bi-dimensional functionally graded beams vol.77, pp.5, 2020, https://doi.org/10.12989/sem.2021.77.5.587
  17. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  18. Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets vol.27, pp.4, 2020, https://doi.org/10.12989/cac.2021.27.4.369
  19. Free vibration of multi-cracked beams vol.79, pp.4, 2020, https://doi.org/10.12989/sem.2021.79.4.441