DOI QR코드

DOI QR Code

Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors

  • Nejadi, Mohammad Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2019.12.02
  • 심사 : 2020.02.29
  • 발행 : 2020.03.25

초록

In the present study, according to the important of porosity in low specific weight in comparison of high stiffness of carbon nanotubes reinforced composite, buckling and free vibration analysis of sandwich composite beam in two configurations, of laminates using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and three types of porosity distribution on critical buckling load and natural frequency are discussed. It is shown the buckling loads and natural frequencies of laminate 1 are significantly larger than the results of laminate 2. When configuration 2 (the core is made of FRC) and laminate 1 ([0/90/0/45/90]s) are used, the first natural frequency rises noticeably. It is also demonstrated that the influence of the core height in the case of lower carbon volume fractions is negligible. Even though, when volume fraction of fiber increases, the critical buckling load enhances smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Investigating three porosity patterns, beam with the distribution of porosity Type 2 has the maximum critical buckling load and first natural frequency. Among three elastic foundations (constant, linear and parabolic), buckling load and natural frequency in linear variation has the least amount. For all kind of elastic foundations, when the porosity coefficient increases, critical buckling load and natural frequency decline significantly.

키워드

과제정보

연구 과제 주관 기관 : University of Kashan

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this work, and also they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 891238/18.

참고문헌

  1. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  2. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
  3. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  4. Anirudh, B., Ganapathi, M., Anant, C. and Polit, O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, 110899. https://doi.org/10.1016/j.compstruct.2019.110899.
  5. Anvari, M., Mohammadimehr, M. and Amiri, A. (2020), "Vibration behavior of a micro cylindrical sandwich panel reinforced by graphene platelet", J. Vib. Control, 1077546319892730. https://doi.org/10.1177/1077546319892730.
  6. Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B: Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.
  7. Babaeeian, M. and Mohammadimehr, M. (2020), "Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method", Opt. Laser. Eng., 128, 106002. https://doi.org/10.1016/j.optlaseng.2020.106002.
  8. Bahaadini, R. and Saidi, A.R. (2018), "Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow", Aerosp. Sci. Technol., 80, 381-391. https://doi.org/10.1016/j.ast.2018.06.035.
  9. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2019), "Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: Magneto-electro-elastic vibration and buckling solution", J. Vib. Control, 25(23-24), 2875-2893. https://doi.org/10.1177/1077546319860314.
  10. Barati, M.R. and Zenkour, A.M. (2018), "Analysis of postbuckling behavior of general higher-order functionally graded nanoplates with geometrical imperfection considering porosity distributions", Mech. Adv. Mater. Struct., 26(12), 1081-1088. https://doi.org/10.1080/15376494.2018.1430280.
  11. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  12. Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  13. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  14. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  15. Bourada, F., Bousahla, AA., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  16. Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "An efficient meshfree method for vibration analysis of laminated composite plates", Comput. Mech., 48(2), 175-193. https://doi.org/10.1007/s00466-011-0591-8.
  17. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  18. Chemi, A., Zidour, M., Heireche, H., Rakrak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nano tubes embedded in an elastic medium", Mech. Compos. Mater., 53(6), 827-836. https://doi.org/10.1007/s11029-018-9708-x.
  19. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  20. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  21. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  22. Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.
  23. Fang, W., Yu, T., Lich, L.V. and Bui, T.Q. (2019), "Analysis of thick porous beams by a Quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
  24. Ferreira, A.D.B., Novoa, P.R. and Marques, A.T. (2016), "Multifunctional material systems: A state-of-the-art review", Compos. Struct., 151, 3-35. https://doi.org/10.1016/j.compstruct.2016.01.028.
  25. Ghorbanpour Arani, A., Mobarakeh, M.R., Shams, S. and Mohammadimehr, M. (2012), "The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5.
  26. Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.
  27. Gui, X., Li, H., Zhang, L., Jia, Y., Liu, L., Li, Z., Wei, J., Wang, K., Zhu, H., Tang, Z., Wu, D. and Cao, A. (2011), "A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nano tube sponges", ACS Nano, 5, 4276-4283. https://doi.org/10.1021/nn201002d.
  28. Hu, N., Fukunaga, H., Lu, C., Kameyama, M. and Yan, B. (2005), "Prediction of elastic properties of Carbon Nano Tube reinforced composites", Proc. Royal Soc. A, 461, 1685-1710. https://doi.org/10.1098/rspa.2004.1422.
  29. Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating Carbon Nano Tubes using Galerkin's method", Compos. Part B: Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  30. Jabbari, M. and Rezaei, M. (2016), "Mechanical buckling of FG saturated porous rectangular plate with piezoelectric actuators", Iran. J. Mech. Eng., 17(2), 45-65.
  31. Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stress., 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768.
  32. Jabbari, M., Mojahedin, A., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech., 140(2), 287-295. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000663.
  33. Kacar, A., Tan, H.T. and Kaya, M.O. (2011), "Free vibration analysis of beams on variable Winkler elastic foundation by using the differential transform method", Math. Comput. Appl., 16(3), 773-783. https://doi.org/10.3390/mca16030773.
  34. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  35. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  36. Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.
  37. Kim, S.E., Duc, N.D., Nam, V.H. and Van Sy, N. (2019), "Nonlinear vibration and dynamic buckling of eccentrically oblique stiffened FGM plates resting on elastic foundations in thermal environment", Thin Wall. Struct., 142, 287-296. ttps://doi.org/10.1016/j.tws.2019.05.013.
  38. Kumar, P. and Srinivas, J. (2017), "Free vibration, bending and buckling of a FG-CNT reinforced composite beam: Comparative analysis with hybrid laminated composite beam", Multidisc. Model. Mater. Struct., 13(4), 590-611. https://doi.org/10.1108/MMMS-05-2017-0032.
  39. Liu, S., Yu, T., Yin, S. and Bui, T.Q. (2019), "Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis", Comput. Struct., 212, 173-187. https://doi.org/10.1016/j.compstruc.2018.10.009.
  40. Magnucka-Blandzi, E. (2009), "Dynamic stability of a metal foam circular plate", J. Theo. Appl. Mech., 47(2), 421-433.
  41. Magnucka, E. (2008), "Axisymmetrical deflection and buckling of circular porous-cellular plate", Thin Wall. Struct., 46, 333-337. https://doi.org/10.1016/j.tws.2007.06.006.
  42. Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theo. Appl. Mech., 42(4), 859-868.
  43. Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319.
  44. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
  45. Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216, 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095.
  46. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., ... & Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  47. Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R (2017), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Therm. Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.
  48. Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two opposite edges simply supported", Mech. Eng. Sci., 224, 1831-1841. https://doi.org/10.1243/09544062JMES1804.
  49. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. http://dx.doi.org/10.12989/sem.2016.59.3.431.
  50. Mohammadimehr, M. and Shahedi, S. (2017), "High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM", Compos. Part B, 108, 91-107. https://doi.org/10.1016/j.compositesb.2016.09.040.
  51. Mohammadimehr, M., Hooyeh, H.M, Afshari, H. and Salarkia, M.R. (2017b), "Free vibration analysis of double-bonded isotropic piezoelectric Timoshenko micro-beam based on strain gradient and surface stress elasticity theories under initial stress stress using differential quadrature method", Mech. Adv. Mater. Struct., 24(4), 287-303. https://doi.org/10.1080/15376494.2016.1142022.
  52. Mohammadimehr, M., Okhravi, S.V. and Akhavan Alavi, S.M. (2018), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control, 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022.
  53. Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2017a), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622.
  54. Montemurro, M., Vincenti, A. and Vannucci, P. (2012), "Design of the elastic properties of laminates with a minimum number of plies", Mech. Compos. Mater., 48(4), 369-390. https://doi.org/10.1007/s11029-012-9284-4.
  55. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T. and Hui, D. (2018), "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Compos. Part B: Eng., 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012.
  56. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B: Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.
  57. Radic, N. (2018), "On buckling of porous double-layered FG nanoplates in the Pasternak elastic foundation based on nonlocal strain gradient elasticity", Compos. Part B: Eng., 153, 456-479. https://doi.org/10.1016/j.compositesb.2018.09.014.
  58. Rajabi, J. and Mohammadimehr, M. (2019a), "Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT", Steel Compos. Struct., 33(4), 509-523. https://doi.org/10.12989/scs.2019.33.4.509.
  59. Rajabi, J. and Mohammadimehr, M. (2019b), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
  60. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  61. Shahedi, S. and Mohammadimehr, M. (2020), "Nonlinear high-order dynamic stability of AL-foam flexible cored sandwich beam with variable mechanical properties and carbon nanotubes-reinforced composite face sheets in thermal environment", J. Sandw. Struct. Mater., 22(2), 248-302. https://doi.org/10.1177/1099636217738908.
  62. Shariat, B.A.S. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78(3), 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.
  63. Shen, M., Shi, Z., Zhao, C., Zhong, X., Liu, B. and Shu, X. (2019), "2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements", Comput. Concrete, 24(3), 207-222. https://doi.org/10.12989/cac.2019.24.3.207.
  64. Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
  65. Sudheer, M., Pradyoth, K.R. and Somayaji, S (2015), "Analytical and numerical validation of epoxy/glass structural composites for elastic models", Am. J. Mater. Sci., 5(3C), 162-168. https://doi.org/10.5923/c.materials.201502.32.
  66. Syiemiong, H. and Marthong, C. (2019), "Effect of moisture on the compressive strength of low-strength hollow concrete blocks", Comput. Concrete, 23(4), 267-272. https://doi.org/10.12989/cac.2019.23.4.267.
  67. Tang, C.W. (2019), "Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures", Comput. Concrete, 24(1), 63-71. https://doi.org/10.12989/cac.2019.24.1.063.
  68. Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of two-directionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.
  69. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nano tubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
  70. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: a survey", Appl. Mech. Rev., 02081, 1-55. https://doi.org/10.1115/1.4028859.
  71. Wang, J., Chen, X., Bu, X. and Guo, S. (2019), "Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs", Comput. Concrete, 24(4), 283-293. https://doi.org/10.12989/cac.2019.24.4.283.
  72. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nano tube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  73. Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dyn., 15(7), 1540011-17. https://doi.org/10.1142/S0219455415400118.
  74. Wu, L. (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64, 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004.
  75. Xiang, S., Wang, J., Ai, Y.T. and Li, G.Ch. (2015), "Buckling analysis of laminated composite plates by using various higher-order shear deformation theories", Mech. Compos. Mater., 51(5), 645-654. https://doi.org/10.1007/s11029-015-9534-3.
  76. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nano tube-reinforced composite", Int. J. Press. Vess. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  77. Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.
  78. Yazdani, R., Mohammadimehr, M. and Zenkour, A.M. (2019), "Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings", Steel Compos. Struct., 33(1), 93-109. https://doi.org/10.12989/scs.2019.33.1.093.
  79. Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.
  80. Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019), "A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.
  81. Zaoui, F.Z., Djamel Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B: Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  82. Zghal, S., Frikha, A. and Dammak, F. (2017), "Static analysis of functionally graded carbon nano tube-reinforced plate and shell", Compos. Struct., 176, 1107-1123. https://doi.org/10.1016/j.compstruct.2017.06.015
  83. Zhang, H.S. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nano tube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.

피인용 문헌

  1. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  2. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
  3. Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation vol.27, pp.2, 2020, https://doi.org/10.12989/cac.2021.27.2.085