DOI QR코드

DOI QR Code

Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media

  • Taj, Muhammad (Department of Mathematics, The University of Azad Jammu and Kashmir) ;
  • Safeer, Muhammad (Department of Mathematics, The University of Azad Jammu and Kashmir) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad) ;
  • Ahmad, Manzoor (Department of Mathematics, The University of Azad Jammu and Kashmir) ;
  • Abbas, Kamran (Department of Statistics, The University of Azad Jammu and Kashmir) ;
  • Khan, Abdul Q. (Department of Mathematics, The University of Azad Jammu and Kashmir) ;
  • Tounsi, Abdelouahed (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Algeria Faculty of Technology Civil Engineering Department)
  • Received : 2019.12.31
  • Accepted : 2020.02.21
  • Published : 2020.03.25

Abstract

Cytoskeleton components in living cell bear large compressive force and are responsible in maintaining the cell shape. Actually these filaments are surrounded by viscoelastic media within the cell. This surrounding, viscoelastic media affects the buckling behavior of these filaments when external force is applied on these filaments by exerting continuous pressure in opposite directions to the incipient buckling of the filaments. In this article a mechanical model is applied to account the effects of this media on the buckling behavior of intermediate filaments network of cytoskeleton. The model immeasurably associates; filament's bending rigidity, adjacent system elasticity, and cytosol viscosity with buckling wavelength, buckling growth rate and buckling amplitude of the filaments.

Keywords

Acknowledgement

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

  1. Aydogdu, I., Carbas, S. and Akin, A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.
  2. Asghar, S., Hussain M. and Naeem, M. (2019b), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J. Physica E: Low Dimens. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726.
  3. Asghar, S., Hussain, M. and Naeem, M.N. (2019a), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J. Physica E: Low Dimens. Syst. Nanostruct., 116, 11326. https://doi.org/10.1016/j.physe.2019.113726.
  4. Avcar, M. (2014), "Elastic buckling of steel columns under axial compression", Am. J. Civil Eng., 2(3), 102-108. : https://doi.org/10.11648/j.ajce.20140203.17.
  5. Aydogdu, I., Carbas, S. and Akin, A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.
  6. Block, J., Schroeder, V., Pawelzyk, P., Willenbacher, N. and Koster, S. (2015), "Physical properties of cytoplasmic intermediate filaments", Biochimica et Biophysica Acta (BBA)-Molecul. Cell Res., 1853(11), 3053-3064. https://doi.org/10.1016/j.bbamcr.2015.05.009.
  7. Basini, G., Grasselli, F., Bussolati, S., Conti, V., Bianchi, F., Grolli, S., ... & Ramoni, R. (2019), "Characterization of a protein-based filtering cartridge for the removal of atrazine-induced effects on living cultured cells", Membr. Water Treat., 10(2), 121-125. https://doi.org/110.12989/mwt.2019.10.2.121.
  8. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  9. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., ... and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  10. Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nat. Rev. Molecul. Cell Biol., 5(8), 601-613. https://doi.org/10.1103/PhysRevLett.91.098101.
  11. de Pablo, P.J., Schaap, I.A., MacKintosh, F.C. and Schmidt, C.F. (2003), "Deformation and collapse of microtubules on the nanometer scale", Phys. Rev. Lett., 91(9), 098101. https://doi.org/10.1529/biophysj.105.077826.
  12. Fatahi-Vajari. A., Azimzadeh, Z. and Hussain. M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203
  13. Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E:Low Dimens. Syst. Nanostruct., 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022.
  14. Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120(4), 923-934. https://doi.org/10.1083/jcb.120.4.923.
  15. Hanukoglu, I. and Ezra, L. (2014), "Proteopedia entry: Coiled-coil structure of keratins", Biochem. Molecul. Biol. Ed., 42(1), 93-94. https://doi.org/10.1002/bmb.20746.
  16. Hanukoglu, I. and Fuchs, E. (1983), "The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins", Cell, 33(3), 915-924. https://doi.org/10.1016/0092-8674(83)90034-X.
  17. Hu, F., Shi, Z. and Shan, J. (2018). "Optimal design of bio-inspired isolation systems using performance and fragility objectives", Struct. Monit. Mainten., 5(3), 325-343. https://doi.org/10.12989/smm.2018.5.3.325.
  18. Hussain, M., Naeem, M.N. and Tounsi, A. (2020d), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3). (in Press)
  19. Hussain, M., Naeem, M.N. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube based on Relagh-Ritz Method".
  20. Hussain, M. and Naeem, M.N. (2020), "Mass density effect on vibration of zigzag and chiral SWCNTs", J. Sandw. Struct. Mater., 1099636220906257. https://doi.org/10.1177/1099636220906257.
  21. Hussain, M., Naeem, M.N. and Tounsi, A. (2020c), "Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Constr., 9(3). (in Press)
  22. Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled Fluid-filled cylindrical shell", Adv. Comput. Des. (Accepted)
  23. Hussain, M. and Naeem, M. (2019d), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  24. Hussain, M. and Naeem, M. (2018a), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Chapter 5, Intechopen, Novel Nanomaterials- Synthesis and Applications. https://doi.org/10.5772/intechopen.73503.
  25. Hussain, M. and Naeem, M. (2019a), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality", Perspective of Carbon Nanotubes. IntechOpen..
  26. Hussain, M. and Naeem, M.N. (2018b), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Chapter 3, Intechopen, Advance Testing and Engineering. https://doi.org/10.5772/intechopen.80672.
  27. Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  28. Hussain, M. and Naeem, M.N. (2019c), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci. Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.
  29. Hussain, M., Naeem, M., Shahzad, A. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Chapter 14, Intechopen, Computational Fluid Dynamics. https://doi.org/10.5772/intechopen.72172.
  30. Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459.
  31. Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309, 2019.
  32. Hussain, M., Naeem, M.N., Shahzad A, He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320.
  33. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  34. Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.
  35. Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
  36. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Molecul. Cell Biol., 8(7), 562. https://doi.org/10.1038/nrm2197.
  37. Ishida, T., Thitamadee, S. and Hashimoto, T. (2007), "Twisted growth and organization of cortical microtubules", J. Plant Res., 120(1), 61-70. https://doi.org/10.1007/s10265-006-0039-y.
  38. Ishikawa, H., Bischoff, R. and Holtzer, H. (1968), "Mitosis and intermediate-sized filaments in developing skeletal muscle", J. Cell Biol., 38(3), 538-555. https://doi.org/10.1083/jcb.38.3.538.
  39. Jo, Y., Hwang, K. and Lee, C. (2019), "Enhancing anaerobic digestion of vegetable waste and cellulose by bioaugmentation with rumen culture", Membr. Water Treat., 10(3), 213-221. https://doi.org/10.12989/mwt.2019.10.3.213
  40. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
  41. Koester, S., Weitz, D.A., Goldman, R.D., Aebi, U. and Herrmann, H. (2015), "Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks", Current opinion in cell biology, 32, 82-91. https://doi.org/10.1016/j.ceb.2015.01.001.
  42. Kwon, S.H. and Rhim, J.W. (2016), "Analysis of newly designed CDI cells by CFD and its performance comparison", Membr. Water Treat., 7(2), 115-126. https://doi.org/10.12989/mwt.2016.7.2.115.
  43. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraf. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202.
  44. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017b), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. https://doi.org/10.12989/amr.2017.6.4.349.
  45. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017a), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
  46. Landau, L. and Lifshitz, E.M. (1986), Theoretical Physics, Vol. 6. Hydrodynamics.
  47. Lee, C.H., Kim, M.S., Chung, B.M., Leahy, D.J. and Coulombe, P.A. (2012), "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments", Nat. Struct. Molecul. Biol., 19(7), 707. https://doi.org/10.1038/nsmb.2330.
  48. Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.
  49. Lim, R.Y., Fahrenkrog, B., Koser, J., Schwarz-Herion, K., Deng, J. and Aebi, U. (2007), "Nanomechanical basis of selective gating by the nuclear pore complex", Sci., 318(5850), 640-643. https://doi.org/10.1126/science.1145980.
  50. Lodish, H., Berk, A., Zipursky, S., Matsudaira, P., Baltimore, D. and Darnell, J. (2000), "Intermediate filaments", Cold Spring Harbor Symposia on Quantitative Biology, 46, 413-429. https://doi.org/10.1101/SQB.1982.046.01.040
  51. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  52. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  53. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  54. Nogales, E. (2001), "Structural insights into microtubule function", Ann. Rev. Biophys. Biomolecul. Struct., 30(1), 397-420. https://doi.org/10.1146/annurev.biophys.30.1.397.
  55. Numanoglu, H.M. and Civalek, O. (2019), "On the dynamics of small-sized structures", Int. J. Eng. Sci., 145, 103164. https://doi.org/10.1016/j.ijengsci.2019.103164
  56. Panda, S.K. and Katariya, P.V. (2015)., "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9.
  57. Qian, X., Zhang, J. and Ru, C. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573.
  58. Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS one, 4(10), e7294. https://doi.org/10.1371/journal.pone.0007294.
  59. Quinlan, R., Hutchison, C. and Lane, B. (1994), "Intermediate filament proteins", Protein Prof., 1(8), 779. https://doi.org/10.1038/eye.1999.116.
  60. Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017) "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
  61. Shi, Y., Guo, W. and Ru, C. (2008), "Relevance of Timoshenko-beam model to microtubules of low shear modulus", Physica E: Low Dimens. Syst. Nanostruct., 41(2), 213-219. https://doi.org/10.1016/j.physe.2008.06.025.
  62. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  63. Sehar. A., Hussain M., Naeem M.N and Tounsi. A. (2020), "Prediction and assessment of nolocal natural frequencies DWCNTs: Vibration Analysis", Comput. Concrete. (submitted)
  64. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 10.1177/0954406219888234. https://doi.org/10.1177/0954406219888234.
  65. Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Eng., 2(4), 228. https://doi.org/10.4236/eng.2010.24033
  66. Sirenko, Y.M., Stroscio, M.A. and Kim, K. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003.
  67. Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biol., 70(10-11), 1174-1186. https://doi.org/10.1139/o92-163.
  68. Shallan, O., Maaly, H.M., Sagiroglu, M. and Hamdy, O. (2019), "Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms", Struct. Eng. Mech., 70(2), 221-231. https://doi.org/10.12989/sem.2019.70.2.221.
  69. Sun, X., Tao, J., Li, J., Dai, Q. and Yu, X. (2017), "Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps", Smart Struct. Syst., 20(3), 311-328. https://doi.org/10.12989/sss.2017.20.3.311.
  70. Suleiman, B., Abdulkareem, S.A., Afolabi, E.A., Musa, U., Mohammed, I.A. and Eyikanmi, T.A. (2001). "Optimization of bioethanol production from nigerian sugarcane juice using factorial design", Adv. Energy Res., 4(1), 69-86. https://doi.org/10.12989/eri.2016.4.1.069.
  71. Taj, M. and Zhang, J. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.
  72. Taj, M. and Zhang, J. (2012), "Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model", Biochem. Biophys. Res. Commun., 424(1), 89-93. https://doi.org/10.1016/j.bbrc.2012.06.072.
  73. Takemura, M., Gomi, H., Colucci-Guyon, E. and Itohara, S. (2002), "Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice", J. Neurosci., 22(16), 6972-6979. https://doi.org/10.1523/JNEUROSCI.22-16-06972.2002.
  74. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
  75. Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-hill.
  76. Traub, P. (2012), Intermediate Filaments: a Review, Springer Science & Business Media.
  77. Tseng, Y., Kole, T.P. and Wirtz, D. (2002), "Micromechanical mapping of live cells by multiple-particle-tracking microrheology", Biophys. J., 83(6), 3162-3176. https://doi.org/10.1016/S0006-3495(02)75319-8.
  78. Vaziri, A., Lee, H. and Mofrad, M.K. (2006), "Deformation of the cell nucleus under indentation: mechanics and mechanisms", J. Mater. Res., 21(8), 2126-2135. https://doi.org/10.1557/JMR.2006.0262.
  79. Wang, C., Ru, C. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/PhysRevE.74.052901.
  80. Wang, Q., Tolstonog, G.V., Shoeman, R. and Traub, P. (2001), "Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins", Biochem., 40(34), 10342-10349. https://doi.org/10.1021/bi0108305.
  81. Whittington, M.A., Stanford, I.M., Colling, S.B., Jefferys, J.G. and Traub, R.D. (1997), "Spatiotemporal patterns of ${\gamma}$ frequency oscillations tetanically induced in the rat hippocampal slice", J. Physiol., 502(3), 591-607. https://doi.org/10.1113/jphysiol.2002.017624.

Cited by

  1. Strength performance with buckling analysis of Intermediate filaments by consideration nonlocal parameters vol.28, pp.1, 2021, https://doi.org/10.12989/cac.2021.28.1.069