Acknowledgement
The author(s) received no financial support for the research, authorship, and/or publication of this article.
References
- Aydogdu, I., Carbas, S. and Akin, A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.
- Asghar, S., Hussain M. and Naeem, M. (2019b), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J. Physica E: Low Dimens. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726.
- Asghar, S., Hussain, M. and Naeem, M.N. (2019a), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J. Physica E: Low Dimens. Syst. Nanostruct., 116, 11326. https://doi.org/10.1016/j.physe.2019.113726.
- Avcar, M. (2014), "Elastic buckling of steel columns under axial compression", Am. J. Civil Eng., 2(3), 102-108. : https://doi.org/10.11648/j.ajce.20140203.17.
- Aydogdu, I., Carbas, S. and Akin, A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.
- Block, J., Schroeder, V., Pawelzyk, P., Willenbacher, N. and Koster, S. (2015), "Physical properties of cytoplasmic intermediate filaments", Biochimica et Biophysica Acta (BBA)-Molecul. Cell Res., 1853(11), 3053-3064. https://doi.org/10.1016/j.bbamcr.2015.05.009.
- Basini, G., Grasselli, F., Bussolati, S., Conti, V., Bianchi, F., Grolli, S., ... & Ramoni, R. (2019), "Characterization of a protein-based filtering cartridge for the removal of atrazine-induced effects on living cultured cells", Membr. Water Treat., 10(2), 121-125. https://doi.org/110.12989/mwt.2019.10.2.121.
- Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., ... and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nat. Rev. Molecul. Cell Biol., 5(8), 601-613. https://doi.org/10.1103/PhysRevLett.91.098101.
- de Pablo, P.J., Schaap, I.A., MacKintosh, F.C. and Schmidt, C.F. (2003), "Deformation and collapse of microtubules on the nanometer scale", Phys. Rev. Lett., 91(9), 098101. https://doi.org/10.1529/biophysj.105.077826.
- Fatahi-Vajari. A., Azimzadeh, Z. and Hussain. M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203
- Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E:Low Dimens. Syst. Nanostruct., 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022.
- Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120(4), 923-934. https://doi.org/10.1083/jcb.120.4.923.
- Hanukoglu, I. and Ezra, L. (2014), "Proteopedia entry: Coiled-coil structure of keratins", Biochem. Molecul. Biol. Ed., 42(1), 93-94. https://doi.org/10.1002/bmb.20746.
- Hanukoglu, I. and Fuchs, E. (1983), "The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins", Cell, 33(3), 915-924. https://doi.org/10.1016/0092-8674(83)90034-X.
- Hu, F., Shi, Z. and Shan, J. (2018). "Optimal design of bio-inspired isolation systems using performance and fragility objectives", Struct. Monit. Mainten., 5(3), 325-343. https://doi.org/10.12989/smm.2018.5.3.325.
- Hussain, M., Naeem, M.N. and Tounsi, A. (2020d), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3). (in Press)
- Hussain, M., Naeem, M.N. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube based on Relagh-Ritz Method".
- Hussain, M. and Naeem, M.N. (2020), "Mass density effect on vibration of zigzag and chiral SWCNTs", J. Sandw. Struct. Mater., 1099636220906257. https://doi.org/10.1177/1099636220906257.
- Hussain, M., Naeem, M.N. and Tounsi, A. (2020c), "Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Constr., 9(3). (in Press)
- Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled Fluid-filled cylindrical shell", Adv. Comput. Des. (Accepted)
- Hussain, M. and Naeem, M. (2019d), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
- Hussain, M. and Naeem, M. (2018a), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Chapter 5, Intechopen, Novel Nanomaterials- Synthesis and Applications. https://doi.org/10.5772/intechopen.73503.
- Hussain, M. and Naeem, M. (2019a), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality", Perspective of Carbon Nanotubes. IntechOpen..
- Hussain, M. and Naeem, M.N. (2018b), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Chapter 3, Intechopen, Advance Testing and Engineering. https://doi.org/10.5772/intechopen.80672.
- Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
- Hussain, M. and Naeem, M.N. (2019c), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci. Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.
- Hussain, M., Naeem, M., Shahzad, A. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Chapter 14, Intechopen, Computational Fluid Dynamics. https://doi.org/10.5772/intechopen.72172.
- Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459.
- Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309, 2019.
- Hussain, M., Naeem, M.N., Shahzad A, He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320.
- Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
- Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.
- Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
- Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Molecul. Cell Biol., 8(7), 562. https://doi.org/10.1038/nrm2197.
- Ishida, T., Thitamadee, S. and Hashimoto, T. (2007), "Twisted growth and organization of cortical microtubules", J. Plant Res., 120(1), 61-70. https://doi.org/10.1007/s10265-006-0039-y.
- Ishikawa, H., Bischoff, R. and Holtzer, H. (1968), "Mitosis and intermediate-sized filaments in developing skeletal muscle", J. Cell Biol., 38(3), 538-555. https://doi.org/10.1083/jcb.38.3.538.
- Jo, Y., Hwang, K. and Lee, C. (2019), "Enhancing anaerobic digestion of vegetable waste and cellulose by bioaugmentation with rumen culture", Membr. Water Treat., 10(3), 213-221. https://doi.org/10.12989/mwt.2019.10.3.213
- Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
- Koester, S., Weitz, D.A., Goldman, R.D., Aebi, U. and Herrmann, H. (2015), "Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks", Current opinion in cell biology, 32, 82-91. https://doi.org/10.1016/j.ceb.2015.01.001.
- Kwon, S.H. and Rhim, J.W. (2016), "Analysis of newly designed CDI cells by CFD and its performance comparison", Membr. Water Treat., 7(2), 115-126. https://doi.org/10.12989/mwt.2016.7.2.115.
- Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraf. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202.
- Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017b), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. https://doi.org/10.12989/amr.2017.6.4.349.
- Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017a), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
- Landau, L. and Lifshitz, E.M. (1986), Theoretical Physics, Vol. 6. Hydrodynamics.
- Lee, C.H., Kim, M.S., Chung, B.M., Leahy, D.J. and Coulombe, P.A. (2012), "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments", Nat. Struct. Molecul. Biol., 19(7), 707. https://doi.org/10.1038/nsmb.2330.
- Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.
- Lim, R.Y., Fahrenkrog, B., Koser, J., Schwarz-Herion, K., Deng, J. and Aebi, U. (2007), "Nanomechanical basis of selective gating by the nuclear pore complex", Sci., 318(5850), 640-643. https://doi.org/10.1126/science.1145980.
- Lodish, H., Berk, A., Zipursky, S., Matsudaira, P., Baltimore, D. and Darnell, J. (2000), "Intermediate filaments", Cold Spring Harbor Symposia on Quantitative Biology, 46, 413-429. https://doi.org/10.1101/SQB.1982.046.01.040
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
- Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
- Nogales, E. (2001), "Structural insights into microtubule function", Ann. Rev. Biophys. Biomolecul. Struct., 30(1), 397-420. https://doi.org/10.1146/annurev.biophys.30.1.397.
- Numanoglu, H.M. and Civalek, O. (2019), "On the dynamics of small-sized structures", Int. J. Eng. Sci., 145, 103164. https://doi.org/10.1016/j.ijengsci.2019.103164
- Panda, S.K. and Katariya, P.V. (2015)., "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9.
- Qian, X., Zhang, J. and Ru, C. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573.
- Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS one, 4(10), e7294. https://doi.org/10.1371/journal.pone.0007294.
- Quinlan, R., Hutchison, C. and Lane, B. (1994), "Intermediate filament proteins", Protein Prof., 1(8), 779. https://doi.org/10.1038/eye.1999.116.
- Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017) "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
- Shi, Y., Guo, W. and Ru, C. (2008), "Relevance of Timoshenko-beam model to microtubules of low shear modulus", Physica E: Low Dimens. Syst. Nanostruct., 41(2), 213-219. https://doi.org/10.1016/j.physe.2008.06.025.
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
- Sehar. A., Hussain M., Naeem M.N and Tounsi. A. (2020), "Prediction and assessment of nolocal natural frequencies DWCNTs: Vibration Analysis", Comput. Concrete. (submitted)
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 10.1177/0954406219888234. https://doi.org/10.1177/0954406219888234.
- Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Eng., 2(4), 228. https://doi.org/10.4236/eng.2010.24033
- Sirenko, Y.M., Stroscio, M.A. and Kim, K. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003.
- Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biol., 70(10-11), 1174-1186. https://doi.org/10.1139/o92-163.
- Shallan, O., Maaly, H.M., Sagiroglu, M. and Hamdy, O. (2019), "Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms", Struct. Eng. Mech., 70(2), 221-231. https://doi.org/10.12989/sem.2019.70.2.221.
- Sun, X., Tao, J., Li, J., Dai, Q. and Yu, X. (2017), "Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps", Smart Struct. Syst., 20(3), 311-328. https://doi.org/10.12989/sss.2017.20.3.311.
- Suleiman, B., Abdulkareem, S.A., Afolabi, E.A., Musa, U., Mohammed, I.A. and Eyikanmi, T.A. (2001). "Optimization of bioethanol production from nigerian sugarcane juice using factorial design", Adv. Energy Res., 4(1), 69-86. https://doi.org/10.12989/eri.2016.4.1.069.
- Taj, M. and Zhang, J. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.
- Taj, M. and Zhang, J. (2012), "Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model", Biochem. Biophys. Res. Commun., 424(1), 89-93. https://doi.org/10.1016/j.bbrc.2012.06.072.
- Takemura, M., Gomi, H., Colucci-Guyon, E. and Itohara, S. (2002), "Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice", J. Neurosci., 22(16), 6972-6979. https://doi.org/10.1523/JNEUROSCI.22-16-06972.2002.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-hill.
- Traub, P. (2012), Intermediate Filaments: a Review, Springer Science & Business Media.
- Tseng, Y., Kole, T.P. and Wirtz, D. (2002), "Micromechanical mapping of live cells by multiple-particle-tracking microrheology", Biophys. J., 83(6), 3162-3176. https://doi.org/10.1016/S0006-3495(02)75319-8.
- Vaziri, A., Lee, H. and Mofrad, M.K. (2006), "Deformation of the cell nucleus under indentation: mechanics and mechanisms", J. Mater. Res., 21(8), 2126-2135. https://doi.org/10.1557/JMR.2006.0262.
- Wang, C., Ru, C. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/PhysRevE.74.052901.
- Wang, Q., Tolstonog, G.V., Shoeman, R. and Traub, P. (2001), "Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins", Biochem., 40(34), 10342-10349. https://doi.org/10.1021/bi0108305.
-
Whittington, M.A., Stanford, I.M., Colling, S.B., Jefferys, J.G. and Traub, R.D. (1997), "Spatiotemporal patterns of
${\gamma}$ frequency oscillations tetanically induced in the rat hippocampal slice", J. Physiol., 502(3), 591-607. https://doi.org/10.1113/jphysiol.2002.017624.
Cited by
- Strength performance with buckling analysis of Intermediate filaments by consideration nonlocal parameters vol.28, pp.1, 2021, https://doi.org/10.12989/cac.2021.28.1.069