DOI QR코드

DOI QR Code

Numerical determination of crack width for reinforced concrete deep beams

  • Demir, Aydin (Department of Civil Engineering, Faculty of Engineering, Sakarya University, Esentepe Campus) ;
  • Caglar, Naci (Department of Civil Engineering, Faculty of Engineering, Sakarya University, Esentepe Campus)
  • 투고 : 2019.10.17
  • 심사 : 2020.02.20
  • 발행 : 2020.03.25

초록

In the study, a new, simple and alternative formula is proposed to calculate numerically crack widths of concrete on a finite element (FE) model. By considering more general tension softening behavior of concrete, the proposed expression is derived irrespective of any tension softening model given in the literature or design codes. The test results of six reinforced concrete (RC) deep beams having different geometrical and material properties selected from a recent existing experimental study of the authors are used to verify the accuracy and reliability of the proposed formula and the created numerical FE models of the specimens. Moreover, the crack width results obtained from the FE models are compared with the test results to see the performance of the proposed formula. The results of the study demonstrate that the proposed formula gives very accurate results in a comparison with the test results. The ratios of errors on the results stay commonly at an acceptable level as well. Consequently, the proposed formula is quite simple, unique, and robust to determine crack widths of RC deep beams on an FE model.

키워드

과제정보

연구 과제 주관 기관 : The Scientific and Technological Research Council of Turkey (TUBITAK)

The study is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through Project no: 117M854.

참고문헌

  1. ABAQUS Documentation (2018), Dassault Systemes, 10 rue Marcel Dassault CS 40501 78946 Velizy-Villacoublay Cedex, SE, France.
  2. ABAQUS Research Edition (2018), Abaqus unified FEA, Dassault Systemes, 10 rue Marcel Dassault CS 40501 78946 Velizy-Villacoublay Cedex, SE, France.
  3. ACI 318-14 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Michigan, USA.
  4. Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in plastic damage model for RC structures", Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022.
  5. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Constr., 16, 155-177. https://doi.org/10.1007/BF02486267.
  6. Birrcher, D., Tuchscherer, R., Huizinga, M., Bayrak, O., Wood, S. and Jirsa, J. (2009), "Strength and serviceability design of reinforced concrete deep beams", Research Report No. 0-5253-1, Center for Transportation Research, The University of Texas, Austin, USA.
  7. Birtel, V. and Mark, P. (2006), "Parameterised finite element modeling of RC beam shear failure", ABAQUS User's Conference, Boston, MA, USA.
  8. BS:8110 (1989), British Standard, Structural Use of Concrete - Part 2, British Standards Institutions, London, England.
  9. Cerioni, R., Iori, I., Michelini, E. and Bernardi, P. (2008), "Multi-directional modeling of crack pattern in 2D R/C members", Eng. Fract. Mech., 75(3-4), 615-628. https://doi.org/10.1016/j.engfracmech.2007.04.012.
  10. Chowdhury, S.H. (2001), "Crack width predictions of reinforced and partially prestressed concrete beams: A unified formula", Struct. Eng. Mech. Comput., 1, 327-334. https://doi.org/10.1016/b978-008043948-8/50032-1.
  11. Demir, A., Caglar, N. and Ozturk, H. (2019), "Parameters affecting diagonal cracking behavior of reinforced concrete deep beams", Eng. Struct., 184, 217-231. https://doi.org/10.1016/j.engstruct.2019.01.090.
  12. Demir, A., Caglar, N., Ozturk, H. and Sumer, Y. (2016b), "Nonlinear finite element study on the improvement of shear capacity in reinforced concrete T-Section beams by an alternative diagonal shear reinforcement", Eng. Struct., 120, 158-165. https://doi.org/10.1016/j.engstruct.2016.04.029.
  13. Demir, A., Ozturk, H. and Dok, G. (2016a), "3D numerical modeling of RC deep beam behavior by nonlinear finite element analysis", Disast. Sci. Eng., 2(1), 13-18.
  14. Demir, A., Ozturk, H., Bogdanovic, A., Stojmanovska, M. and Edip, K. (2017), "Sensitivity of dilation angle in numerical simulation of reinforced concrete deep beams", Scientif. J. Civil Eng., 6(1), 33-37.
  15. Ferrotto, M.F., Cavaleri L. and Di Trapani, F. (2018), "FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model", Comput. Concrete, 22(2), 143-152. https://doi.org/10.12989/cac.2018.22.2.143.
  16. FIB MC2010 (2013), CEB-FIB Model Code for Concrete Structures 2010, International Federation for Structural Concrete, Lausanne, Switzerland.
  17. Gopinath, S., Rajasankar, J., Iyer, N.R., Krishnamoorthy, T.S. and Lakshmanan, N. (2009), "A strain-based constitutive model for concrete under tension in nonlinear finite element analysis of RC flexural members", Struct. Durab. Hlth. Monit., 5(4), 311-335.
  18. Hillerborg, A. (1989), "Fracture mechanics: application to concrete", Research Report No. ACI-SP-118, American Concrete Institute, Michigan, USA.
  19. Hordijk, D.A. (1992), "Tensile and tensile fatigue behavior of concrete - experiments, modeling, and analyses", Heron, 37(1), 3-79. http://resolver.tudelft.nl/uuid:06985d0d-1230-4a08-924a-2553a171f08f.
  20. Jin, N., Tian, Y. and Jin, X. (2007), "Numerical simulation of fracture and damage behaviour of concrete at different ages", Comput. Concrete, 4(3), 221-241. https://doi.org/10.12989/cac.2007.4.3.221.
  21. Kamali, A.Z. (2012). "Shear strength of reinforced concrete beams subjected to blast loading", Ph.D. Dissertation, Department of Civil and Architectural Engineering, Royal Institute of Technology (KTH).
  22. Karayannis, C.G. (2000), "Smeared crack analysis for plain concrete in torsion", J. Struct. Eng., ASCE, 126(6), 638-645. https://doi.org/10.1061/(asce)0733-9445(2000)126:6(638).
  23. Kaya, M. and Yaman, C. (2018), "Modelling the reinforced concrete beams strengthened with GFRP against shear crack", Comput. Concrete, 21(2), 127-137. https://doi.org/10.12989/cac.2018.21.2.127.
  24. Khennane, A. (2013), Introduction to Finite Element Analysis Using MATLAB and Abaqus, CRC Press, Florida, USA.
  25. Klink, S.A. (1985), "Actual poisson ratio of concrete", ACI J., 82(6), 813-817. https://doi.org/10.14359/10392.
  26. Kratzig, W.B. and Polling, R. (2004), "An elasto-plastic damage model for reinforced concrete with minimum number of material parameters", Comput. Struct., 82(15-16), 1201-1215. https://doi.org/10.1016/j.compstruc.2004.03.002.
  27. Liu, B. and Bai, G.L. (2019), "Finite element modeling of bond-slip performance of section steel reinforced concrete", Comput. Concrete, 24(3), 237-247. https://doi.org/10.12989/cac.2019.24.3.237.
  28. Liu, J., Jia, Y., Zhang, G. and Wang, J. (2018), "Numerical calculation of crack width in prestressed concrete beams with bond-slip effect", Multidisc. Model. Mater. Struct., 15(2), 523-536. https://doi.org/10.1108/mmms-01-2018-0008.
  29. Mander, J.B., Priestley, M.J.N. and Park, R. (1984). "Seismic design of bridge piers", Research Rep. No. 84-2, Dept. of Civil Engineering, Univ. of Canterbury, Christchurch, New Zealand.
  30. Marecki, T., Marzec, I., Bobiski, J. and Tejchman, J. (2007), "Effect of a characteristic length on crack spacing in a reinforced concrete bar under tension", Mech. Res. Commun., 34(5-6), 460-465. https://doi.org/10.1016/j.mechrescom.2007.04.002.
  31. Ozturk, H., Caglar, N. and Demir, A. (2019), "Effectiveness of diagonal shear reinforcement on reinforced concrete short beams", Earthq. Struct., 17(5), 501-510. https://doi.org/10.12989/eas.2019.17.5.501.
  32. Panto, B., Giresini, L., Sassu, M. and Calio, I. (2017), "Non-linear modeling of masonry churches through a discrete macro-element approach", Earthq. Struct., 12(2), 223-236. https://doi.org/10.12989/eas.2017.12.2.223.
  33. Petersson, P.E. (1981), "Crack growth and development of fracture zones in plain concrete and similar materials", Research Report No. TVBM-1006, Division of Building Materials, Lund Institute of Technology, Lund, Sweden.
  34. Pipa, J.A.L. (1993), "Ductility of Reinforced Concrete Elements Subjected to Cyclical Actions, Influence of the Mechanical Characteristics of the Rebar", Ph.D. Dissertation, Instituto Superior Tecnico, Universidade Tecnica de Lisboa.
  35. Rots, J.G. (1988), "Computational modeling of concrete fracture",
  36. Sena Cruz, J., Barros, J. and Azevedo, A. (2006), "Elasto-plastic multi-fixed smeared crack model for concrete", Research Report No. 04/DEC/E-05, Universidade do Minho, Portugal.
  37. Theiner, Y. and Hofstetter, G. (2009), "Numerical prediction of crack propagation and crack widths in concrete structures", Eng. Struct., 31(8), 1832-1840. https://doi.org/10.1016/j.engstruct.2009.02.041.
  38. Van Mier, J.G.M. (1986), "Multiaxial strain-softening of concrete", Mater. Struct., 19, 179-200. https://doi.org/10.1007/bf02472034.
  39. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression field theory for RC elements subjected to shear", J. ACI, 83(6), 925-933.
  40. Vidal, T., Castel, A. and Francois, R. (2004), "Analyzing crack width to predict corrosion in reinforced concrete", Cement Concrete Res., 34(1), 165-174. https://doi.org/10.1016/s0008-8846(03)00246-1.
  41. Vonk, R.A. (1993), "A micromechanical investigation of softening of concrete loaded in compression", Heron, 38(3), 3-94.
  42. Yang, S.T., Li, K.F. and Li, C.Q. (2018), "Numerical determination of concrete crack width for corrosion-affected concrete structures", Comput. Struct., 207, 75-82. https://doi.org/10.1016/j.compstruc.2017.07.016.