Acknowledgement
Supported by : The Scientific and Technological Research Council of Turkey (TUBITAK)
The study is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through Project no: 117M854.
References
- ABAQUS Documentation (2018), Dassault Systemes, 10 rue Marcel Dassault CS 40501 78946 Velizy-Villacoublay Cedex, SE, France.
- ABAQUS Research Edition (2018), Abaqus unified FEA, Dassault Systemes, 10 rue Marcel Dassault CS 40501 78946 Velizy-Villacoublay Cedex, SE, France.
- ACI 318-14 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Michigan, USA.
- Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in plastic damage model for RC structures", Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022.
- Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Constr., 16, 155-177. https://doi.org/10.1007/BF02486267.
- Birrcher, D., Tuchscherer, R., Huizinga, M., Bayrak, O., Wood, S. and Jirsa, J. (2009), "Strength and serviceability design of reinforced concrete deep beams", Research Report No. 0-5253-1, Center for Transportation Research, The University of Texas, Austin, USA.
- Birtel, V. and Mark, P. (2006), "Parameterised finite element modeling of RC beam shear failure", ABAQUS User's Conference, Boston, MA, USA.
- BS:8110 (1989), British Standard, Structural Use of Concrete - Part 2, British Standards Institutions, London, England.
- Cerioni, R., Iori, I., Michelini, E. and Bernardi, P. (2008), "Multi-directional modeling of crack pattern in 2D R/C members", Eng. Fract. Mech., 75(3-4), 615-628. https://doi.org/10.1016/j.engfracmech.2007.04.012.
- Chowdhury, S.H. (2001), "Crack width predictions of reinforced and partially prestressed concrete beams: A unified formula", Struct. Eng. Mech. Comput., 1, 327-334. https://doi.org/10.1016/b978-008043948-8/50032-1.
- Demir, A., Caglar, N. and Ozturk, H. (2019), "Parameters affecting diagonal cracking behavior of reinforced concrete deep beams", Eng. Struct., 184, 217-231. https://doi.org/10.1016/j.engstruct.2019.01.090.
- Demir, A., Caglar, N., Ozturk, H. and Sumer, Y. (2016b), "Nonlinear finite element study on the improvement of shear capacity in reinforced concrete T-Section beams by an alternative diagonal shear reinforcement", Eng. Struct., 120, 158-165. https://doi.org/10.1016/j.engstruct.2016.04.029.
- Demir, A., Ozturk, H. and Dok, G. (2016a), "3D numerical modeling of RC deep beam behavior by nonlinear finite element analysis", Disast. Sci. Eng., 2(1), 13-18.
- Demir, A., Ozturk, H., Bogdanovic, A., Stojmanovska, M. and Edip, K. (2017), "Sensitivity of dilation angle in numerical simulation of reinforced concrete deep beams", Scientif. J. Civil Eng., 6(1), 33-37.
- Ferrotto, M.F., Cavaleri L. and Di Trapani, F. (2018), "FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model", Comput. Concrete, 22(2), 143-152. https://doi.org/10.12989/cac.2018.22.2.143.
- FIB MC2010 (2013), CEB-FIB Model Code for Concrete Structures 2010, International Federation for Structural Concrete, Lausanne, Switzerland.
- Gopinath, S., Rajasankar, J., Iyer, N.R., Krishnamoorthy, T.S. and Lakshmanan, N. (2009), "A strain-based constitutive model for concrete under tension in nonlinear finite element analysis of RC flexural members", Struct. Durab. Hlth. Monit., 5(4), 311-335.
- Hillerborg, A. (1989), "Fracture mechanics: application to concrete", Research Report No. ACI-SP-118, American Concrete Institute, Michigan, USA.
- Hordijk, D.A. (1992), "Tensile and tensile fatigue behavior of concrete - experiments, modeling, and analyses", Heron, 37(1), 3-79. http://resolver.tudelft.nl/uuid:06985d0d-1230-4a08-924a-2553a171f08f.
- Jin, N., Tian, Y. and Jin, X. (2007), "Numerical simulation of fracture and damage behaviour of concrete at different ages", Comput. Concrete, 4(3), 221-241. https://doi.org/10.12989/cac.2007.4.3.221.
- Kamali, A.Z. (2012). "Shear strength of reinforced concrete beams subjected to blast loading", Ph.D. Dissertation, Department of Civil and Architectural Engineering, Royal Institute of Technology (KTH).
- Karayannis, C.G. (2000), "Smeared crack analysis for plain concrete in torsion", J. Struct. Eng., ASCE, 126(6), 638-645. https://doi.org/10.1061/(asce)0733-9445(2000)126:6(638).
- Kaya, M. and Yaman, C. (2018), "Modelling the reinforced concrete beams strengthened with GFRP against shear crack", Comput. Concrete, 21(2), 127-137. https://doi.org/10.12989/cac.2018.21.2.127.
- Khennane, A. (2013), Introduction to Finite Element Analysis Using MATLAB and Abaqus, CRC Press, Florida, USA.
- Klink, S.A. (1985), "Actual poisson ratio of concrete", ACI J., 82(6), 813-817. https://doi.org/10.14359/10392.
- Kratzig, W.B. and Polling, R. (2004), "An elasto-plastic damage model for reinforced concrete with minimum number of material parameters", Comput. Struct., 82(15-16), 1201-1215. https://doi.org/10.1016/j.compstruc.2004.03.002.
- Liu, B. and Bai, G.L. (2019), "Finite element modeling of bond-slip performance of section steel reinforced concrete", Comput. Concrete, 24(3), 237-247. https://doi.org/10.12989/cac.2019.24.3.237.
- Liu, J., Jia, Y., Zhang, G. and Wang, J. (2018), "Numerical calculation of crack width in prestressed concrete beams with bond-slip effect", Multidisc. Model. Mater. Struct., 15(2), 523-536. https://doi.org/10.1108/mmms-01-2018-0008.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1984). "Seismic design of bridge piers", Research Rep. No. 84-2, Dept. of Civil Engineering, Univ. of Canterbury, Christchurch, New Zealand.
- Marecki, T., Marzec, I., Bobiski, J. and Tejchman, J. (2007), "Effect of a characteristic length on crack spacing in a reinforced concrete bar under tension", Mech. Res. Commun., 34(5-6), 460-465. https://doi.org/10.1016/j.mechrescom.2007.04.002.
- Ozturk, H., Caglar, N. and Demir, A. (2019), "Effectiveness of diagonal shear reinforcement on reinforced concrete short beams", Earthq. Struct., 17(5), 501-510. https://doi.org/10.12989/eas.2019.17.5.501.
- Panto, B., Giresini, L., Sassu, M. and Calio, I. (2017), "Non-linear modeling of masonry churches through a discrete macro-element approach", Earthq. Struct., 12(2), 223-236. https://doi.org/10.12989/eas.2017.12.2.223.
- Petersson, P.E. (1981), "Crack growth and development of fracture zones in plain concrete and similar materials", Research Report No. TVBM-1006, Division of Building Materials, Lund Institute of Technology, Lund, Sweden.
- Pipa, J.A.L. (1993), "Ductility of Reinforced Concrete Elements Subjected to Cyclical Actions, Influence of the Mechanical Characteristics of the Rebar", Ph.D. Dissertation, Instituto Superior Tecnico, Universidade Tecnica de Lisboa.
- Rots, J.G. (1988), "Computational modeling of concrete fracture",
- Sena Cruz, J., Barros, J. and Azevedo, A. (2006), "Elasto-plastic multi-fixed smeared crack model for concrete", Research Report No. 04/DEC/E-05, Universidade do Minho, Portugal.
- Theiner, Y. and Hofstetter, G. (2009), "Numerical prediction of crack propagation and crack widths in concrete structures", Eng. Struct., 31(8), 1832-1840. https://doi.org/10.1016/j.engstruct.2009.02.041.
- Van Mier, J.G.M. (1986), "Multiaxial strain-softening of concrete", Mater. Struct., 19, 179-200. https://doi.org/10.1007/bf02472034.
- Vecchio, F.J. and Collins, M.P. (1986), "The modified compression field theory for RC elements subjected to shear", J. ACI, 83(6), 925-933.
- Vidal, T., Castel, A. and Francois, R. (2004), "Analyzing crack width to predict corrosion in reinforced concrete", Cement Concrete Res., 34(1), 165-174. https://doi.org/10.1016/s0008-8846(03)00246-1.
- Vonk, R.A. (1993), "A micromechanical investigation of softening of concrete loaded in compression", Heron, 38(3), 3-94.
- Yang, S.T., Li, K.F. and Li, C.Q. (2018), "Numerical determination of concrete crack width for corrosion-affected concrete structures", Comput. Struct., 207, 75-82. https://doi.org/10.1016/j.compstruc.2017.07.016.