DOI QR코드

DOI QR Code

Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University Patiala) ;
  • Zakhmi, Himanshi (Department of Basic and Applied Sciences, Punjabi University Patiala)
  • 투고 : 2019.09.24
  • 심사 : 2019.11.18
  • 발행 : 2020.03.25

초록

The present investigation deals with the thermomechanical interactions in an orthotropic thermoelastic homogeneous body in the context of fractional order theory of thermoelasticity due to time harmonic sources. The application of a time harmonic concentrated and distributed sources has been considered to show the utility of the solution obtained. Assuming the disturbances to be harmonically time dependent, the expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to determine the results in physical domain. The effect of frequency on various components has been depicted through graphs.

키워드

참고문헌

  1. Abbas, I.A. (2015), "A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole", Mech. Based Des. Struct. Mech., 43(4), 501-513. https://doi.org/10.1080/15397734.2015.1029589
  2. Abbas, I.A. (2016), "Eigen value approach to fractional order thermoelasticity for an infinite body with spherical cavity", J. Assoc. Arab Univ. Basic Appl. Sci., 20, 84-88. http://doi.org/10.1016/j.jaubas.2014.11.001
  3. Abbas, I.A. (2017), "Generalized thermoelastic interactions in a hollow cylinder with temperature dependent material properties", J. Thermal Sci. Technol., 12(1), 1-9. http://doi.org/10.1299/jtst.2017jtst000
  4. Abbas, I.A., Alzahrani, F.S. and Berto, F. (2018), "The effect of fractional derivative on photo-thermoelastic interaction in an infinite semiconducting medium with cylindrical hole", Eng. Solid Mech., 6, 275-284. http://doi.org/10.5267/j.esm.2018.4.001
  5. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
  6. Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017a), "Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model", J. Thermal Stress., 40(4), 403-419. http://doi.org/10.1080/01495739.2017.1283971
  7. Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017b), "Thermal shock response in magneto-thermoelastic orthotropic medium with three-phase-lag model", J. Electromagn. Waves Applicat., 31(9), 879-897. http://doi.org/10.1080/09205071.2017.1326851
  8. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503
  9. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., Int. J., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161
  10. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
  11. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191
  12. Caputo, M. (1967), "Linear model of dissipation whose Q is always frequency independent-II", Geophys. J. Royal Astronom. Soc., 13, 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
  13. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., Int. J., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185
  14. Ezzat, M.A. and Ezzat, S. (2016), "Fractional thermoelasticity applications for porous asphaltic materials", Petrol. Sci., 13(3), 550-560. http://doi.org/10.1007/s12182-016-0094-5
  15. Jiang, X. and Xu, M. (2010), "The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems", Physica A, 389(17), 3368-3374. https://doi.org/10.1016/j.physa.2010.04.023
  16. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
  17. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  18. Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theor. Appl. Mech., 41(4), 247-265. http://doi.org/10.2298/TAM1404247.
  19. Kumar, R. and Gupta, V. (2013), "Plane wave propagation in anisotropic thermoelastic medium with fractional order derivative and void", J. Thermoelast., 1(1), 21-34.
  20. Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., Int. J., 57(1), 91-103. http://doi.org/10.12989/sem.2016.57.1.091
  21. Lata, P. (2018a), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., Int. J., 27(4), 439-451. http://doi.org/10.12989/scs.2018.27.4.439
  22. Lata, P. (2018b), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., Int. J., 66(1), 113-124. http://doi.org/10.12989/sem.2018.66.1.113
  23. Lata, P. (2019), "Time harmonic interactions in fractional thermoelastic diffusive thick circular plate", Coupl. Syst. Mech., Int. J., 8(1), 39-53. http://doi.org/10.12289/csm./2019.8.1.039
  24. Lata, P. and Kaur, I. (2018), "Effect of hall current in transversely isotropic magneto thermoelastic rotating medium with fractional order heat transfer due to normal force", Adv. Mater., Res., Int. J., 7(3), 203-220. http://doi.org/10.12989/amr.2018.7.3.203
  25. Lata, P. and Kaur, I. (2019a), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain, Coupl. Syst. Mech., Int. J., 8(1), 55-70. http://doi.org/10.12989/csm.2019.8.1.055
  26. Lata, P. and Kaur, I. (2019b), "Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source", Adv. Mater. Res., Int. J., 8(2), 83-102. http://doi.org/10.12989/amr.2019.8.2.083
  27. Lata, P. and Kaur, I. (2019c), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Appl. Sci., 1(5), p. 426. http://doi.org/10.1007/s42452-019-0438-z
  28. Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in anisotropic thermoelastic medium", Steel Compos. Struct., Int. J., 22(3), 567-587. http://doi.org/10.12989/scs.2016.22.3.567.
  29. Marin, M. (1997a), "On the domain of influence in thermoelasticity of bodies with voids", Archivum Mathematicum, 33(4), 301-308.
  30. Marin, M. (1997b), "An uniqueness result for body with voids in linear thermoelasticity", Rend. Mater. Appl., 17(7), 103-113.
  31. Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Mathe. Anal. Applicat., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045
  32. Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. part B: Eng., 126, 27-37. http://doi.org/10.1016/j.compositesb.2017.05.063
  33. Marin, M. and Othman, M.I.A. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. http://doi.org/10.1016/j.rinp.2017.10.012
  34. Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Applicat., 25(1-2), 175-196.
  35. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., Int. J., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381
  36. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
  37. Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Integrals and Derivatives: Theory and Applications, Willey.
  38. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), Numerical Recipes In Fortran 77, Cambridge University Press, Cambridge, New York, NY, USA.
  39. Sharma, N., Kumar, R. and Ram, P. (2008), "Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., Int. J., 28(1), 19-38. https://doi.org/10.12989/sem.2008.28.1.019
  40. Tripathi, J.J., Warbhe, S., Deshmukh, K.C. and Verma, J. (2018), "Fractional order generalized thermoelastic response in a half space due to a periodically varying heat source", Multidiscipl. Model. Mater. Struct., 14(1), 2-15. https://doi.org/10.1108/MMMS-04-2017-0022
  41. Xiong, C. and Niu, Y. (2017), "Fractional order generalized thermoelastic diffusion theory", Appl. Mathe. Mech., 38(8), 1091-1108. http://doi.org/10.1007/s10483-017-2230-9
  42. Xiong, C. and Ying, G. (2016), "Effect of Variable Properties and moving heat source on Magnetothermoelastic problem under fractional order thermoelasticity", Adv. Mater. Sci. Eng., 1-12. http://doi.org/10.1155/2016/5341569
  43. Ying, X.H. and Yun, J.X. (2015), "Time fractional dual-phase-lag heat conduction equation", Chinese Physics B, 24(3), 034401. https://doi.org/10.1088/1674-1056/24/3/034401
  44. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., Int. J., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389

피인용 문헌

  1. Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2020, https://doi.org/10.12989/sem.2021.77.3.315