References
- Abbas, I.A. (2015), "A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole", Mech. Based Des. Struct. Mech., 43(4), 501-513. https://doi.org/10.1080/15397734.2015.1029589
- Abbas, I.A. (2016), "Eigen value approach to fractional order thermoelasticity for an infinite body with spherical cavity", J. Assoc. Arab Univ. Basic Appl. Sci., 20, 84-88. http://doi.org/10.1016/j.jaubas.2014.11.001
- Abbas, I.A. (2017), "Generalized thermoelastic interactions in a hollow cylinder with temperature dependent material properties", J. Thermal Sci. Technol., 12(1), 1-9. http://doi.org/10.1299/jtst.2017jtst000
- Abbas, I.A., Alzahrani, F.S. and Berto, F. (2018), "The effect of fractional derivative on photo-thermoelastic interaction in an infinite semiconducting medium with cylindrical hole", Eng. Solid Mech., 6, 275-284. http://doi.org/10.5267/j.esm.2018.4.001
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
- Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017a), "Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model", J. Thermal Stress., 40(4), 403-419. http://doi.org/10.1080/01495739.2017.1283971
- Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017b), "Thermal shock response in magneto-thermoelastic orthotropic medium with three-phase-lag model", J. Electromagn. Waves Applicat., 31(9), 879-897. http://doi.org/10.1080/09205071.2017.1326851
- Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503
- Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., Int. J., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161
- Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191
- Caputo, M. (1967), "Linear model of dissipation whose Q is always frequency independent-II", Geophys. J. Royal Astronom. Soc., 13, 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., Int. J., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185
- Ezzat, M.A. and Ezzat, S. (2016), "Fractional thermoelasticity applications for porous asphaltic materials", Petrol. Sci., 13(3), 550-560. http://doi.org/10.1007/s12182-016-0094-5
- Jiang, X. and Xu, M. (2010), "The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems", Physica A, 389(17), 3368-3374. https://doi.org/10.1016/j.physa.2010.04.023
- Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
- Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
- Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theor. Appl. Mech., 41(4), 247-265. http://doi.org/10.2298/TAM1404247.
- Kumar, R. and Gupta, V. (2013), "Plane wave propagation in anisotropic thermoelastic medium with fractional order derivative and void", J. Thermoelast., 1(1), 21-34.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., Int. J., 57(1), 91-103. http://doi.org/10.12989/sem.2016.57.1.091
- Lata, P. (2018a), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., Int. J., 27(4), 439-451. http://doi.org/10.12989/scs.2018.27.4.439
- Lata, P. (2018b), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., Int. J., 66(1), 113-124. http://doi.org/10.12989/sem.2018.66.1.113
- Lata, P. (2019), "Time harmonic interactions in fractional thermoelastic diffusive thick circular plate", Coupl. Syst. Mech., Int. J., 8(1), 39-53. http://doi.org/10.12289/csm./2019.8.1.039
- Lata, P. and Kaur, I. (2018), "Effect of hall current in transversely isotropic magneto thermoelastic rotating medium with fractional order heat transfer due to normal force", Adv. Mater., Res., Int. J., 7(3), 203-220. http://doi.org/10.12989/amr.2018.7.3.203
- Lata, P. and Kaur, I. (2019a), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain, Coupl. Syst. Mech., Int. J., 8(1), 55-70. http://doi.org/10.12989/csm.2019.8.1.055
- Lata, P. and Kaur, I. (2019b), "Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source", Adv. Mater. Res., Int. J., 8(2), 83-102. http://doi.org/10.12989/amr.2019.8.2.083
- Lata, P. and Kaur, I. (2019c), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Appl. Sci., 1(5), p. 426. http://doi.org/10.1007/s42452-019-0438-z
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in anisotropic thermoelastic medium", Steel Compos. Struct., Int. J., 22(3), 567-587. http://doi.org/10.12989/scs.2016.22.3.567.
- Marin, M. (1997a), "On the domain of influence in thermoelasticity of bodies with voids", Archivum Mathematicum, 33(4), 301-308.
- Marin, M. (1997b), "An uniqueness result for body with voids in linear thermoelasticity", Rend. Mater. Appl., 17(7), 103-113.
- Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Mathe. Anal. Applicat., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045
- Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. part B: Eng., 126, 27-37. http://doi.org/10.1016/j.compositesb.2017.05.063
- Marin, M. and Othman, M.I.A. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. http://doi.org/10.1016/j.rinp.2017.10.012
- Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Applicat., 25(1-2), 175-196.
- Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., Int. J., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
- Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Integrals and Derivatives: Theory and Applications, Willey.
- Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), Numerical Recipes In Fortran 77, Cambridge University Press, Cambridge, New York, NY, USA.
- Sharma, N., Kumar, R. and Ram, P. (2008), "Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., Int. J., 28(1), 19-38. https://doi.org/10.12989/sem.2008.28.1.019
- Tripathi, J.J., Warbhe, S., Deshmukh, K.C. and Verma, J. (2018), "Fractional order generalized thermoelastic response in a half space due to a periodically varying heat source", Multidiscipl. Model. Mater. Struct., 14(1), 2-15. https://doi.org/10.1108/MMMS-04-2017-0022
- Xiong, C. and Niu, Y. (2017), "Fractional order generalized thermoelastic diffusion theory", Appl. Mathe. Mech., 38(8), 1091-1108. http://doi.org/10.1007/s10483-017-2230-9
- Xiong, C. and Ying, G. (2016), "Effect of Variable Properties and moving heat source on Magnetothermoelastic problem under fractional order thermoelasticity", Adv. Mater. Sci. Eng., 1-12. http://doi.org/10.1155/2016/5341569
- Ying, X.H. and Yun, J.X. (2015), "Time fractional dual-phase-lag heat conduction equation", Chinese Physics B, 24(3), 034401. https://doi.org/10.1088/1674-1056/24/3/034401
- Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., Int. J., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389
Cited by
- Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2020, https://doi.org/10.12989/sem.2021.77.3.315