Acknowledgement
The author(s) received no financial support for the research, authorship, and/or publication of this article.
References
- Biot, M. (1954), "Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena", J. Appl. Phys., 25(11), 1385-1391. https://doi.org/10.1063/1.1721573.
- Biot, M. (1965), Mechanics of Incremental Deformations, Wiley, New York, U.S.A.
- Bland, D.R. (2016), The Theory of Linear Viscoelasticity, Dover Publ. Press, Mineola, New York,U.S.A.
- Cowin, S.C. (2013), Continuum Mechanics of Anisotropic Materials, Springer, New York, U.S.A.
- Dhaliwal, R.S. and Wang, J. (1994), "Domain of influence theorem in the theory of elastic materials with voids", Int. J. Eng. Sci., 32(11), 1823-1828. https://doi.org/10.1016/0020-7225(94)90111-2.
- Ellahi, R. (2013), "The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nano-fluid in a pipe: analytical solutions", Appl. Math. Model., 37(3), 1451-1457. https://doi.org/10.1016/j.apm.2012.04.004.
- Fetecau, C., Ellahi, R., Khan, M. and Shah N.A. (2018), "Combined porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate", J. Porous Media, 21(7), 589-605. https://doi.org/10.1615/JPorMedia.v21.i7.20.
- Fedorov, A.V., Fomin, P. and Tropin, D.A. (2012), Mathematical Analysis of Detonation Suppression by Inert Particles, Kao Tech Publ., Kaohsiung, Taiwan.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. http://dx.doi.org/10.1007/BF00045689
- Ies.an, D. (2015), "First-strain gradient theory of thermovisco-elasticity", J. Therm. Stress., 38(7), 701-715. https://doi.org/10.1080/01495739.2015.1039924.
- Knops, R. and Quintanilla, R. (2018), "On quasi-static appro-ximations in linear thermoelastodynamics", J. Therm. Stress., 41(10-12), 1432-1449. https://doi.org/10.1080/01495739.2018.1505448.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096 (67)90024-5.
- Marin, M. and Craciun,E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B Eng.,126, 27-37 https://doi.org/10.1016/j.compositesb.2017.05.063.
- Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of micro-temperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
- Marin, M. (1997), "An uniqueness result for body with voids in linear thermo-elasticity", Rend. Mat. Appl., 17(7), 103-113
- Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math.P hys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809.
- Marin, M. and Florea, O.(2014), "On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies", An. St. Univ. Ovidius Constanta, 22(1), 169-188 https://doi.org/10.2478/auom-2014-0014.
- Othman, M.I.A. and Abbas, I.A. (2012), "Fundamental solution of generalized thermo-visco-elasticity using finite element method", Comput. Math Model., 23, 158-167. https://doi.org/10.1007/s10598-012-9127-0.
- Othman, M.I.A. and Atwa,S.Y. (2012), "Response of micropolar thermoelastic medium with voids due to various source under Green-Naghdi theory", Acta Mechanica Solida Sinica, 25(2), 197-209. https://doi.org/10.1016/S0894-9166(12)60020-2.
- Othman, M.I.A. and Abd-Elaziz, E.M. (2017),"Plane waves in a magneto-thermoelastic solids with voids and micro-temperatures due to hall current and rotation", Results Phys., 7, 4253-4263. https://doi.org/10.1016/j.rinp.2017.10.053.
- Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous media under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.01215.
- Othman, M.I.A. and Zidan, M.E.M. (2015), "The effect of two temperature and gravity on the 2-D problem of thermoviscoelastic material under three-phase-lag model", J. Comput. Theor. Nanosci., 12(8), 1687-1697. https://doi.org/10.1166/jctn.2015.3947.
- Othman, M.I.A. Atwa, S.Y. (2014), "Propagation of plane waves of a model crack for a generalized thermoelasticity under influence of gravity for different theories", Mech. Adv. Mater. Struct., 21(9), 697-709. https://doi.org/10.1080/15376494.2012.707298.
- Othman, M.I.A. and Said, S.M. (2015), "The effect of rotation on a fibre-reinforced medium under generalized magneto-thermo-elasticity with internal heat source", Mech. Adv. Mater. Struct., 22(3), 168-183. https://doi.org/10.1080/15376494.2012.725508.
- Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2015), "The effect of gravity on plane waves in a rotating thermo-micro-stretch elastic solid for a model crack with energy dissipation", Mech. Adv. Mater. Struct., 22(11), 945-955. https://doi.org/10.1080/15376494.2014.884657.
- Othman, M.I.A., Hasona, W.M. and Eraki, E.E.M. (2014), "The effect of initial stress on generalized thermoelastic medium with three-phase-lag model under temperature dependent properties", Can J Phys, 92(5), 448-457. https://doi.org/10.1139/cjp-2013-0461.
- Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model", Struct. Eng. Mech., 57(2), 201-220. https://doi.org/10.1080/17455030.2019.1637552.
- Sharma, V. and Kumar, S. (2016), "Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate", Struct. Eng. Mech., 57(4), 703-716. https://doi.org/10.12989/sem.2016.57.4.703.
- Singh, A., Das, S. and Craciun, E.M. (2018), "Thermal stress intensity factor for an edge crack in orthotropic composite media", Compos. Part B Eng., 153, 130-136. https://doi.org/10.1016/j.compositesb.2018.07.013.
- Sun, Y., Fang, D., Saka, M. and Soh, A.K. (2008), "Laser-induced vibrations of micro-beams under different boundary conditions", Int. J. Solids Struct., 45(7-8), 1993-2013. https://doi.org/10.1016/j.ijsolstr.2007.11.006.
- Wang, X. and Xu, X. (2002), "Thermoelastic wave in metal induced by ultrafast laser pulses", J. Therm. Stress., 25(5), 457-473, https://doi.org/10.1080/01495730252890186.
- Yousif, M.A., Ismael, H.F., Abbas, T. and Ellahi, R. (2019), "Numerical study of momentum and heat transfer of MHD Carreau nanofluid over exponentially stretched plate with internal heat source/sink and radiation", Heat Transfer Res., 50(7), 649-658. https://doi.org/10.1615/HeatTransRes.2018025568.
Cited by
- Effect of gravity on a micropolar thermoelastic medium with voids under three-phase-lag model vol.76, pp.5, 2020, https://doi.org/10.12989/sem.2020.76.5.579