DOI QR코드

DOI QR Code

나이테 분석을 통한 땅밀림 발생 시기 추정

Analysis of Tree-rings for Inference of Periods in which Slow-moving Landslides Occur

  • 박재현 (경남과학기술대학교 산림자원학과) ;
  • 박성균 (경남과학기술대학교 산림자원학과)
  • Park, Jae-Hyeon (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Park, Seonggyun (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 투고 : 2019.01.21
  • 심사 : 2020.03.03
  • 발행 : 2020.03.31

초록

이 연구는 땅밀림지에서 휘어져 자란 수목의 나이테를 분석함으로써 땅밀림이 지속적으로 진행되는가를 파악함으로써 땅밀림지 복구를 위한 기초자료를 제공하기 위하여 수행하였다. 땅밀림지의 각종 인자를 분석하고, 인장균열을 따라 휘어져 자라는 수목을 6개체 선정하여 휘어진 지점의 상부와 하부 단판을 채취하여 경사각을 측정하였다. 본 조사지의 지층 및 주 구성암석은 선캠브리아기에 형성된 회장암 지역으로 타 지층 및 관입암과 단층 및 습곡은 없으며, 땅밀림지 상단부에는 너널이 분포하고, 풍화암으로 이루어져 있다. 땅밀림지에서 휘어진 수목의 나이테 분석과 인공위성사진을 이용한 지형을 분석한 결과, 사면 최하단부에서부터 상단부까지 발생한 땅밀림 발생시기는 1999년부터 2011년까지로 분석되었다. 땅밀림으로 발생된 인장균열이 가리키는 방위각과 수목의 휘어진 각을 T-test한 결과 1% 수준에서 유의하였다. 따라서 땅밀림 지역의 인공위성사진을 통한 지형분석과 함께 휘어진 수목의 나이테분석, 지하수위 분석을 병행한다면 땅밀림 발생시기를 보다 면밀히 확인할 수 있을 것으로 사료된다.

With the aim of restoring slow-moving landslide areas, this study collected fundamental data from tree-ring analysis of curved trees in these areas. We collected both upper and lower stem disks to measure the azimuth angles of six trees with growth curvature caused by tension cracks. Additionally, we analyzed various factors in the slow moving landslide area. The geological strata and main constitutive rocks in the study area were anorthosite-formed in the Precambrian period; moreover, there were no intrusive rocks, other geological strata, geological folds, or faults. The talus with weathered rocks was distributed in the upper zone of the slow-moving landslide area. According to annual-ring analysis of curved trees and terrain analysis by satellite imagery, slow-moving landslide occurred from the top to the bottom end of the slope between 1999 and 2011. There was a significant relationship (P < 0.01) between the azimuth angle of cracks caused by the slow-moving landslide and the angle of the curved trees. These results suggest that the occurrence of slow-moving landslides could be confirmed through analysis of annual-rings of curved trees, underground water levels, and terrain (by satellite imagery).

키워드

참고문헌

  1. Bollschweiler, M. 2007. Spatial and temporal occurrence of past debris flows in the Valais Alps - results from tree-ring analysis. Geo-Focus 20: 182.
  2. Carrara, P.E. and O'Neill, J.M. 2003. Tree-ring dated landslide movements and their relationship to seismic events in southwestern Montana, USA. Quaternary Research 59: 25-35. https://doi.org/10.1016/S0033-5894(02)00010-8
  3. Carrara, P.E. 2007. Movement of a large landslide block dated by tree-ring analysis, Tower Falls Area, Yellowstone National Park, Wyoming. US Geological Survey 43-46.
  4. Choi, J.H., Kim, H.T., Oh, J.Y. and Kim, Y.S. 2011. Analysis on controlling factors of a metropolitan type landslide based on the characteristics of tree growth pattern and geomorphology at the Hwangryeong Mountain, Busan. The Journal of Engineering Geology 21(4): 281-293. https://doi.org/10.9720/kseg.2011.21.4.281
  5. Hadong County Disaster Prevention & Counter Measures Headquarters. 2016. http://safe.hadong.go.kr/(2016. 11. 11).
  6. Hong, S.W., Cho, C.W., Koo, H.B. and Woo, J.Y. 1994. The characteristics of landslides in Korea. Proceedings of the North-East Asia Symposium and Field Workshop on Landslides and Debris Flows, Seoul, Korea. pp. 267-276.
  7. Jeong, J.H., Koo, K.S., Lee, C.H. and Kim, C.S. 2002. Physico-chemical properties of korean forest soils by resigns. Journal of Korean Forest Society 91(6): 694-700.
  8. Kim, K.D., Park, J.H., Lee, C.W. and Kang, M.J. 2016. Tension crack form and soil physical properties change in land creeping area on Okjong, Hadong-Gun, Gyeongsangnam-Do. Journal of Korean Forest Society 105(4): 435-440. https://doi.org/10.14578/jkfs.2016.105.4.435
  9. Kubota, H. 1985. Channel works destroyed stats and repair in land creeping area. Forest Conservation and Forest Road Research Paper 20: 203-209.
  10. Lundstrom, T., Heiz, U., Stoffel, M. and Stockli, V. 2007. Fresh-wood bending: linking the mechanic and growth properties of a Norway spruce stem. Tree Physiology 27: 1229-1241. https://doi.org/10.1093/treephys/27.9.1229
  11. Lundstrom, T., Stoffel, M. and Stockli, V. 2008. Fresh-stem bending of fir and spruce. Tree Physiology 28: 355-366. https://doi.org/10.1093/treephys/28.3.355
  12. Malic I., Wistuba, M., Migon, P. and Fajer, M. 2016. Activity of slow-moving landslides record in eccentric tree rings of Norway Spruce trees (Picea abies Karst.)(Sudetes Mts., Central Europe). Geochronometria 43: 24-37. https://doi.org/10.1515/geochr-2015-0028
  13. Mattheck, C. 1993. Design in der Natur. Rombach Wissenschaft, ReiheOkologie. pp. 1242.
  14. National Geographic Information Institute. 2000, 2004, 2010, 2011. http://map.ngii.go.kr/
  15. Park, J.H. 2016. The actual conditions and management of land creep in korea. Korean Society of Forestry Environment Research 19: 40-50.
  16. Park, J.H. 2018. What's land creep. Korean Society of Forest Environment Research 21: 96-107.
  17. Schweinggruber, F.H. 1996. Tree rings and environment. Dendroecology Paul Haupt, Bern, Stuttgart, Wien. pp. 609.
  18. Stoffel, M., Lievre, I., Conus, D., Grichting, M., Raetzo, H., Gartner, H.W. and Monbaron, M. 2005. 400 years of debris flow activity and triggering weather conditions. Ritigraben, Valais, Switzerland, Arct. Antarc. Alps Research 37(3): 387-395. https://doi.org/10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2
  19. Stoffel, M., Bollschweiler, M. and Hassler, G.R. 2006. Differentiating events on a cone influenced by debris-flow and snow avalanche activity - a dendrogeomorphological approach. Earth Surfer Process of Landform 31(11): 1424-1437. https://doi.org/10.1002/esp.1363
  20. Stoffel, M. and Perret, S. 2006. Reconstructing past rockfall activity with tree rings: some methodological considerations. Dendrochronologia 24(1): 1-15. https://doi.org/10.1016/j.dendro.2006.04.001
  21. Stoffel, M. and Bollschweiler, M. 2008. Tree-ring in natural hazards research? an overview. Natural Hazards and Earth System Science, Copernicus Publications on behalf of the European Geosciences Union 8(2): 187-202. https://doi.org/10.5194/nhess-8-187-2008
  22. Stoffel, M. 2010. Magnitude-frequency relationships of debris flows - A case study based on field surveys and tree-ring records. Geomorphology 116: 67-76. https://doi.org/10.1016/j.geomorph.2009.10.009
  23. Takaya, S. 2017. Facts of landcreep. Nokdo Publication. pp. 255.
  24. Van Den Eeckhaut, M., Muys, B., Van Loy, K., Poesen, J. and H. Beeckman. 2009. Evidence for repeated re-activation of old landslides under forest. Earth Surface Processes and Landforms 34: 352-365. https://doi.org/10.1002/esp.1727
  25. Wistuba M., Malik, I., Gartner, H., Kojs, P. and Owczarek, P. 2013. Application of eccentric growth of trees as a tool for landslide analyses: the example of Picea abies Karst. in the Carpathian and Sudeten Mountains(Central Europe). Catena 111: 41-55. https://doi.org/10.1016/j.catena.2013.06.027
  26. Woo, B.M. 1992. Erosion control and conservation. Hayngmunsa. pp. 310.
  27. Yano, M. 1983. Occurrence of landslide in Shodoshima. Forest Consevation and Forest Road Research Parper 18: 200-203.