DOI QR코드

DOI QR Code

Air Pollution Tolerance Index (APTI) of Main Street Trees Following Ozone Exposure

주요 가로수 묘목의 오존노출에 따른 대기오염내성지수 비교

  • Cho, Su Bin (Department of Environmental Horticulture, University of Seoul) ;
  • Lee, Hyung Sup (Department of Environmental Horticulture, University of Seoul) ;
  • Lee, Jong Kyu (Department of Environmental Horticulture, University of Seoul) ;
  • Park, Sang Hee (Department of Environmental Horticulture, University of Seoul) ;
  • Kim, Han Dong (Department of Environmental Horticulture, University of Seoul) ;
  • Kwak, Myeong Ja (Department of Environmental Horticulture, University of Seoul) ;
  • Lee, Keum Ah (Department of Environmental Horticulture, University of Seoul) ;
  • Lim, Yea Ji (Department of Environmental Horticulture, University of Seoul) ;
  • Woo, Su Young (Department of Environmental Horticulture, University of Seoul)
  • 조수빈 (서울시립대학교 환경원예학과) ;
  • 이형섭 (서울시립대학교 환경원예학과) ;
  • 이종규 (서울시립대학교 환경원예학과) ;
  • 박상희 (서울시립대학교 환경원예학과) ;
  • 김한동 (서울시립대학교 환경원예학과) ;
  • 곽명자 (서울시립대학교 환경원예학과) ;
  • 이금아 (서울시립대학교 환경원예학과) ;
  • 임예지 (서울시립대학교 환경원예학과) ;
  • 우수영 (서울시립대학교 환경원예학과)
  • Received : 2020.01.07
  • Accepted : 2020.03.14
  • Published : 2020.03.31

Abstract

Street trees are very important to urban environments as they can alleviate air pollution. However, when ozone is absorbed through the stomata, it can induce the formation of free radicals inside the tree, negatively affecting the vegetation. The present study investigated the Air Pollution Tolerance Index (APTI) of four major street tree species: Prunus yedoensis, Zelkova serrata, Chionanthus retusus, and Pinus densiflora. Two-year-old seedlings were placed in a phytotron and fumigated with 100 nL·L-1 (ppb) ozone for 4 weeks, following which the ascorbic acid contents, chlorophyll contents, leaf pHs, and relative water contents were measured. There was no significant difference in the APTI of Prunus yedoensis and Zelkova serrata between the ozone and control treatments. By contrast, the ozone treatment caused the APTI of Chionanthus retusus to increase and that of Pinus densiflora to decrease compared with the respective controls. These results suggest that the APTI of these tree species exhibit very different responses to ozone. Therefore, more detailed research should be conducted on a range of species in the future.

가로수는 도시 생활에서 중요한 녹지의 한 부분이고 대기오염을 극복하기 위해서 건전한 생장을 하는 수종을 선정, 식재, 관리 하는 것이 필요하다. 오존은 수목에 활성산소를 만들어 생리적으로 부정적인 영향을 미치며 생태적인 피해를 유발한다. 본 연구는 국내 주요 가로수종인 왕벚나무(Prunus yedoensis), 느티나무(Zelkova serrata), 이팝나무(Chionanthus retusus), 그리고 소나무(Pinus densiflora.)의 묘목을 오존에 노출하여 실험하였다. 2년생 묘목을 Phytotron에서 100 nL·L-1(ppb)의 농도로 약 4주간 실험하였다. 묘목이 생장하는 동안 오존에 대한 생화학적 반응 및 대기오염내성지수(APTI)를 비교하여 오존에 대한 반응을 평가하였다. 아스코르브산 함량, 총 엽록소 함량, pH, 상대수분함량의 수치를 바탕으로 대기오염내성지수를 계산했을 때 왕벚나무와 느티나무는 오존 처리구와 대조구간에 APTI의 변화가 통계적인 유의차를 보이지 않았고, 이팝나무는 오존처리구에서 증가했으며 소나무는 다른 수종에 비해서 감소했다. 본 실험을 통해, APTI를 산출하는 요소에 대한 수종별 반응이 다른 것을 확인하였으며, 이를 통해 수종과 도시 내 대기 환경에 상호작용을 이해하고 대기오염물질인 오존에 따른 도시 내 수종 선별에 대해서 예측할 수 있다.

Keywords

References

  1. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology 24(1): 1-15. https://doi.org/10.1104/pp.24.1.1
  2. Baek, S.G. and Woo, S.Y. 2010. Physiological and biochemical responses of two tree species in urban areas to different air pollution levels. Photosynthetica 48: 23-29. https://doi.org/10.1007/s11099-010-0005-8
  3. Baldantoni, D., Fagnano, M. and Alfani, A. 2011. Tropospheric ozone effects on chemical composition and decomposition rate of Quercus ilex L. leaves. Science of Total Environment 409(5): 979-984. https://doi.org/10.1016/j.scitotenv.2010.11.022
  4. Bellini, E. and De Tullio, M.C. 2019. Ascorbic acid and ozone: novel perspectives to explain an elusive relationship. Plants 8(5): 122. https://doi.org/10.3390/plants8050122
  5. Cheng, H.C., Woo, S.Y., Lee, S.H., Kwak, M.J. and Kim, K. N. 2013. Physiological and biochemical responses of Sedum kamtschaticum and Hosta longipes to ozone stress. Korean Society for Horticultural Science 31(1): 1-7. https://doi.org/10.7235/hort.2013.12007
  6. Choudhary, C.S. and Rao, D.N. 1977. Study of some factors in plants controlling their susceptibility to $SO_2$ pollution. Proceedings of the Indian National Science Academy 43: 236-241.
  7. Dobson, M.C., Taylor, G. and Freer, S.P.H. 1990. The control of ozone uptake by Picea abies (L.) Karst. and Picea sitchensis (Bong.) Carr. during drought and interacting effects on shoot water relations. New Phytologist 116(3): 465-474. https://doi.org/10.1111/j.1469-8137.1990.tb00532.x
  8. Eckert, R.T. and Houston, D.B. 1982. Foliar peroxidase and acid phosphatase activity response to low level $SO_2$ exposure in eastern white pine clones. Forestry Science 28: 661-664.
  9. Edwards, J. 1975. Caring for trees on city streets. Scribner. New York, pp. 64.
  10. Evans, L.S. and Ting, I.P. 1974. Ozone sensitivity of leaves: relationship to leaf water content, gas transfer resistance, and anatomical characteristics. American Journal of Botany 61(6): 592-597. https://doi.org/10.1002/j.1537-2197.1974.tb12280.x
  11. Farooq, M. and Beg, M.U. 1980. Effect of aqueous sulphur dioxide on the membrane permeability of common Indian tree leaves. New Botanist 7: 213-217.
  12. Gharge, S. and Menon, G.S. 2012. Air pollution tolerance index (APTI) of certain herbs from the site around Ambernath MIDC. Asian Journal of Experimental Biological Sciences 3(3): 543-547.
  13. Giday, H., Kjaer, K., Fanourakis, D. and Ottosen, C. 2013. Smaller stomata requires less severe leaf drying to close: A case study in Rosa hybrida. Journal of Plant Physiology 170: 1309-1316. https://doi.org/10.1016/j.jplph.2013.04.007
  14. Han, S.H. and Kim, D.H. 2009. Determination of ozone to tolerance on environmental tree species using standard index. Korean Journal of Agricultural and Forest Meteorology 11(1): 3-12. https://doi.org/10.5532/KJAFM.2009.11.1.003
  15. Heo, J.H., Bang, K.J. and Seol, J.H. 1999. The study on ozone response of indoor landscape plants. Korean Interior Landscape Association 1(1): 79-85.
  16. Husson, O., Audebert A., Benada J., Soglonou B., Tano F., Dieng I., Bousset L. Sarthou J., Joseph S., Menozzi P., Boulakia S. and Futakuchi, K. 2018. Leaf Eh and pH: a novel indicator of plant stress. spatial, temporal and genotypic variability in rice (Oryza sativa L.). Agronomy 8(10): 209. https://doi.org/10.3390/agronomy8100209
  17. Izuta, T. 1998. Ecophysiological responses of Japanese forest tree species to ozone, simulated acid rain and soil acidification. Journal of Plant Research 111(4): 471-480. https://doi.org/10.1007/BF02507781
  18. Jeong, S.E., Kim, M.G., Son, K.C., Kim, P.K. and Lee, J.C. 2003. Effects of ozone exposure time on physiological responses and sensitivity of indoor plants. Korean Society for Horticultural Science 21: 32-32.
  19. Joshi, P.C. and Swami, A. 2009. Air pollution induced changes in the photosynthetic pigments of selected plant species. Journal of Environmental Biology 30: 295-298.
  20. Kampfenkel, K., Van Montagu, M. and Inze, D. 2009. Extraction and determination of ascorbate and dehydroascrobate from plant tissue. Annal of Biochemistry 225: 165-167. https://doi.org/10.1006/abio.1995.1127
  21. Keller, T. and Schwager, H. 1977. Air pollution and ascorbic acid. European Journal of Forest Pathology 7(6): 338-350. https://doi.org/10.1111/j.1439-0329.1977.tb00603.x
  22. Kim, T.J. 2013. The Species selection and planting guidelines for street tree to reduce road atmospheric carbon dioxide. Journal of Korean Forestry Society 1110-1113.
  23. Kwak, M.J., Lee, J.K., Kim, H.D., Park, S.H., Lim, Y.J., Kim, J.E., Baek, S.G., Seo, S.M., Kim, K.N. and Woo, S.Y. 2019. The removal efficiencies of several temperate tree species at adsorbing airborne particulate matter in urban forests and roadsides. Forests 10(11): 960. https://doi.org/10.3390/f10110960
  24. Lee, S.H., Woo, S.Y. and Je, S.M. 2015. Effects of elevated $CO_2$ and water stress on physiological responses of Perilla frutescens var. japonica HARA. Plant Growth Regulation 75: 427-434. https://doi.org/10.1007/s10725-014-0003-0
  25. Lee, J.Y., Je, S.M., Lee, S.H. and Woo, S.Y. 2013. The effects of ozone on photosynthesis, antioxidative enzyme activity and leaf anatomical response in the indoor plants and Japanese red pine. Journal of Korean Forestry Society 102(4): 601-607. https://doi.org/10.14578/jkfs.2013.102.4.601
  26. Mansfield, T.A. and Pearson, M. 1993. Interacting effects of ozone and water stress on the stomatal resistance of beech (Fagus sylvatica L.). New Phytologist 123(2): 351-358. https://doi.org/10.1111/j.1469-8137.1993.tb03745.x
  27. Ministry of Environment. 2019. Domestic ozone atmosphere standards. Seoul, https://www.me.go.kr/mamo/web/index.do?menuId=586 (2019.11.8.).
  28. Molnar, V.E., Simon, E., Tothmeresz, B., Ninsawat, S. and Szabo, S. 2020. Air pollution induced vegetation stress - The Air Pollution Tolerance Index as a quick tool for city health evaluation. Ecological Indicators 113: 106234. https://doi.org/10.1016/j.ecolind.2020.106234
  29. National Institute of Environmental Research. 2001. Understanding and response of ozone-Focused on ground level ozone. National Institute of Environmental Research Annual Report Seoul. 1-13.
  30. Neubert, A., Kley, D., Wildt, J., Segschneider, H.J. and Forstel, H. 1993. Uptake of NO, $NO_2$ and $O_3$ by sunflower (Helianthus annuus L.) and tobacco plants (Nicotiana tabacum L.): dependence on stomatal conductivity. Atmospheric Environment 27(14): 2137-2145. https://doi.org/10.1016/0960-1686(93)90043-X
  31. Noctor, G., Mhamdi, A. and Foyer, C.H. 2016. Oxidative stress and antioxidative systems: Recipes for successful data collection and interpretation. Plant Cell Environment 39: 1140-1160. https://doi.org/10.1111/pce.12726
  32. Noh, H.S., Lee, K.G., Park, S.H., Bae, G.Y. and Lee, J.S. 1998. Screening of tolerance to $O_3$ and $SO_2$ in native flowers. Korean Journal of Horticultural Science and Technology 16(3): 413-413.
  33. Nowak, D.J., Hirabayashi, S., Bodine, A. and Hoehn, R. 2013. Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environmental Pollution 178: 395-402. https://doi.org/10.1016/j.envpol.2013.03.050
  34. Nowak, D.J., Crane, D.E. and Stevens, J.C. 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forest and Urban Greening 4: 115-123. https://doi.org/10.1016/j.ufug.2006.01.007
  35. Park, S.H., Bae, G.Y., Lee, Y.E. and Lee, Y.B. 1998. Analysis of factors related to absorption ability of foliage plants exposed to $O_3$. Journal of the Korean Society of Atmospheric Environment 14(6): 537-543.
  36. Sadeghian, M.M. and Mortazaienezhad, F. 2012. Selection and identification of air pollution-tolerant plants by air pollution tolerance index (APTI) in urban parks of Isfahan, Iran African Journal of Biotechnology 11(55): 11826-11829.
  37. Seoul City. 2019. Quantity of main street trees of Seoul and planting status. https://opengov.seoul.go.kr/data/14732526 (2019.11.8.).
  38. Singare, P.U. and Talpade, M.S. 2013. Physiological responses of some plant species as a bio-Indicator of roadside automobile pollution stress using the air pollution tolerance index approach International Journal of Plant Research. 2013(2): 9-16.
  39. Singh, S.K. and Rao, D.N. 1983. Evaluation of plants for their tolerance to air pollution. In Proceedings of the Symposium on Air Pollution Control 1: 218-224.
  40. Singh, S.K., Rao, D.N., Agrawal, M., Pandey, J. and Naryan, D. 1991. Air pollution tolerance index of plants. Journal of Environmental Management 32(1): 45-55. https://doi.org/10.1016/s0301-4797(05)80080-5
  41. Skelly, J.M., Innes, J.L., Savage, J.E., Snyder, K.R., Vanderheyden, D., Zhang, J. and Sanz, M.J. 1999. Observation and confirmation of foliar ozone symptoms of native plant species of Switzerland and southern Spain. Water, Air, and Soil Pollution 116(1-2): 227-234. https://doi.org/10.1023/A:1005275431399
  42. Thambavani, S.D. and Sabitha, M.A. 2012. Calculating integrated pollution indices for heavy metals in ecological geochemistry assessment near sugar mill. Journal of Research in Biology 2(5): 489-498.
  43. Wan, W., Manning, W.J., Wang, X., Zhang, H., Sun, X. and Zhang, Q. 2014. Ozone and ozone injury on plants in and around Beijing, China. Environmental Pollution 191: 215-222. https://doi.org/10.1016/j.envpol.2014.02.035
  44. Woo, S.Y., Lee, S.H., Jae, S.M., Kwak, M.J. and Kwon, M. 2012. Changes in the growth, gas exchange characteristics, and ultrastructure of pine seedlings depending on the susceptibility of individual seedlings to elevated ozone. Journal of Korean Forestry Society 364-367.
  45. You, H.N., Woo, S.Y. and Park, C.R. 2016. Physiological and biochemical responses of roadside trees grown under different urban environmental conditions in Seoul. Photosynthetica 54(3): 478-480. https://doi.org/10.1007/s11099-016-0184-z
  46. Zhang, L., Su, B.Y., Xu, H. and Li, Y. 2012. Growth and photosynthetic responses of four landscape shrub species to elevated ozone. Photosynthetica. 50(1): 67-76. https://doi.org/10.1007/s11099-012-0004-z
  47. Zhang, P., Liu, Y., Chen, X., Yang, Z., M. and Li, Y. 2016. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method. Ecotoxicology and Environmental Safety 132: 212-223. https://doi.org/10.1016/j.ecoenv.2016.06.003

Cited by

  1. Comparison of the Particulate Matter Removal Capacity of 11 Herbaceous Landscape Plants vol.24, pp.3, 2020, https://doi.org/10.11628/ksppe.2021.24.3.267