DOI QR코드

DOI QR Code

Effect of Seed Priming and Pellet Coating Materials on Seedling Emergence of Aster koraiensis

프라이밍과 펠렛코팅 소재가 벌개미취 종자의 유묘 출현율에 미치는 영향

  • Kang, Won Sik (Department of Life Resources Industry, Dong-A University) ;
  • Kim, Min Geun (Department of Life Resources Industry, Dong-A University) ;
  • Kim, Soo Young (Department of Biological Resources Utilization, National Institute of Biological Resources) ;
  • Han, Sim Hee (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Kim, Du Hyun (Department of Life Resources Industry, Dong-A University)
  • 강원식 (동아대학교 생명자원산업학과) ;
  • 김민근 (동아대학교 생명자원산업학과) ;
  • 김수영 (국립생물자원관 생물자원활용부) ;
  • 한심희 (국립산림과학원 산림생명자원연구부) ;
  • 김두현 (동아대학교 생명자원산업학과)
  • Received : 2019.10.22
  • Accepted : 2020.01.14
  • Published : 2020.03.31

Abstract

In this study, the effect of seed pre-treatments and pellet coating materials to enhance the efficiency of large-scale propagation of Aster koraiensis seeds were investigated. Seeds were immersed in water for one day, and only those that sank were used for pre-treatment to use filled seeds. Pre-treatments were divided into hormone treatments, with gibberellic acid (GA3; 200 and 500 ppm) and 24-epibrassinolide (10-6, 10-7, and 10-8M), and priming with potassium nitrate (100 mM of KNO3). To produce pellet-coated seeds, pellet materials (DTCS or DTK) were applied to control (unprimed) and primed seeds with binders (PVA or CMC). The maximum germination percent (GP) of seeds before pellet coating was 65% (with the priming treatment), and there was no difference in the GP of seeds among hormone treatments. For seeds sown in a growth chamber on filter paper, GP was 41% for control (unprimed/uncoated) seeds, 65% for uncoated primed seeds, 71% for DTCS/PVA-pellet-coated seeds, and 42% for DTK/CMC-pellet-coated seeds. Seeds that were primed first and then pellet-coated showed greatly improved GP, mean germination time (MGT), and germination rate than seeds that were only pellet-coated. For seeds sown in commercial soil in a greenhouse, control seeds had a GP of 27%, whereas primed seeds had the highest GP (58%), and their MGT and GT were 9.4 days and 7.0%·day, respectively. In addition, DTK/PVA-pellet-coated seeds (40%) also had a GP higher than the control (27%), and their MGT was 15-27 days. For seeds sown in sandy-loam soil in a greenhouse, unprimed-pellet-coated seeds and primed-pellet-coated seeds both had GPs ranged of 39%, which were lower than that of control seeds. In general, the seeds that were pellet-coated with DTK had a higher GP than those pellet-coated with DTCS. Furthermore, the MGT of unprimed-pellet-coated seeds was 15.0-19.8 days, which was longer than the MGT of primed-pellet-coated seeds. These results suggest that priming enhances seedling emergence of Aster koraiensis seeds. Moreover, when priming is combined with pellet coating, DTK is a more suitable pellet material than DTCS, and PVA and CMC are equally suitable adhesives.

본 연구는 벌개미취 종자의 대면적 파종 효율성을 증진시키기 위하여, 적절한 종자 전처리 조건과 펠렛코팅 소재를 선정하고자 실시하였다. 벌개미취 종자는 충실종자를 사용하기 위해 1일간 침지처리 후 침강 종자만을 사용하였다. 종자 전처리는 GA3(200, 500 ppm), 24-epibrassinolide(10-6, 10-7, 10-8 M) 호르몬 처리와 염류삼투프라이밍(100 mM KNO3) 처리로 구분하였다. 펠렛코팅은 무처리와 프라이밍 처리 종자에 피복물질(DTCS와 DTK)과 접착제(PVA와 CMC)를 적용하여 제작하였다. 종자들은 필터페이퍼, 상토, 사양토 환경에서 파종하여 파종상에 따른 종자 처리 효과를 비교하였다. 필터페이퍼에 파종한 종자의 발아율은 무처리 종자가 41%, 프라이밍 종자가 65%로 가장 높았으며, 호르몬 처리 간 차이는 없었다. 프라이밍과 DTCS/PVA 펠렛 혼용 종자의 발아율은 71%로 가장 높았으며, 프라이밍과 DTK/CMC 펠렛 혼용 종자의 발아율은 42%로 가장 낮았다. 프라이밍 처리 후 펠렛코팅한 종자는 무처리 펠렛코팅 종자보다 발아율, 평균발아일수, 발아속도가 향상되었다. 온실의 상토에 파종한 프라이밍 종자의 발아율은 58%로 가장 높았으며, 평균발아일수는 9.4일, 발아속도는 7.0%·day로 27% 발아율의 무처리 종자보다 높았다. 또한 DTK/PVA 코팅 종자의 발아율(40%)은 무처리 종자의 발아율(27%) 보다 높았으며, 무처리 펠렛코팅한 종자의 평균발아일수는 15.0-27.0일로 프라이밍 처리 후 펠렛코팅한 종자보다 길었다. 온실의 사양토에 파종한 무처리 펠렛코팅 종자와 프라이밍 처리 후 펠렛코팅한 종자의 발아율은 모두 1-39%의 범위로 무처리 종자보다 낮았다. 펠렛 소재인 DTK는 DTCS보다 높은 발아율을 보였으며, 무처리 펠렛코팅 종자의 평균발아일수는 15.0-19.8일로 프라이밍 후 펠렛코팅한 종자보다 느렸다. 본 연구 결과를 기준으로, 벌개미취 종자의 프라이밍 전 처리는 유묘 출현율에 매우 효과적이며, 프라이밍과 펠렛코팅을 병행할 경우, 펠렛 소재로는 DTK가 더 적합하였고, 접착제는 PVA와 CMC 간 차이가 크지 않기 때문에 모두 사용이 가능한 것으로 판단되었다.

Keywords

References

  1. Baxter, L. and Waters, L. 1986. Effect of a hydrophilic polymer seed coating on the imbibitions, respiration and germination of sweet corn at four matrix potentials. Journal of American Society for Horticultural Science 111(4): 517-520.
  2. Choi, K.U., Lee, Y.S. and Cha, K.H. 2006. Selection and technical development for seed pelleting material of Codonopsis lanceolata Trautv. Korean Journal of Medicinal Crop Science 14(3): 130-133.
  3. Da Silva, C.B. and Marcos-Filho, J. 2015. Performance of bell pepper seeds in response to drum priming with addition of 24-epibrassinolide. HortScience 50(6): 873-878. https://doi.org/10.21273/HORTSCI.50.6.873
  4. Divi, U.K. and Krishna, P. 2010. Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acidinduced inhibition of germination and increases cold tolerance in transgenic seedlings. Journal of Plant Growth Regulation 29(4): 385-393. https://doi.org/10.1007/s00344-010-9150-3
  5. Fridman, Y. and Savaldi-Goldstein, S. 2013. Brassinosteroids in growth control: How, when and where. Plant Science 209: 24-31. https://doi.org/10.1016/j.plantsci.2013.04.002
  6. Gesch, R.W., Archer, D.W. and Spokas, K. 2012. Can using polymer-coated seed reduce the risk of poor soybean emergence in no-tillage soil? Field Crops Research 125: 109-116. https://doi.org/10.1016/j.fcr.2011.09.005
  7. Grellier, P., Riviere, L.M. and Renault, P. 1999. Transfer and water-retention properties of seed-pelleting materials. European Journal of Agronomy 10(1): 57-65. https://doi.org/10.1016/S1161-0301(98)00050-1
  8. Gorim., L. and Asch, F. 2017. Seed coating increases seed moisture uptake and restricts embryonic oxygen availability in germinating cereal seeds. Biology 6(31): 1-14. https://doi.org/10.3390/biology6010001
  9. Hirota H. 1972. Studies of surface sowing in grassland establishment with use of pelleted seeds. Journal of Japanese Society of Grassland Science 18(1): 299-309.
  10. Ju, Y.K., Kwon, H.J., Cho, J.S., Shin, S.L., Kim, T.S., Choi, S.B. and Lee, C.H. 2011. Growth and heavy metal absorption capacity of Aster koraiensis Nakai according to types of land use. Korean Journal of Plant Resources 24(1): 48-54. https://doi.org/10.7732/kjpr.2011.24.1.048
  11. Kim, H.J., Jung, H.H. and Kim, K.S. 2009. Effects of priming on seed germination of Gymnaster koraiensis under low temperature Korean Journal of Horticultural Science and Technology 27(1): 44-48.
  12. Kim, H.J., Jung, H.H. and Kim, K.S. 2010. Influence of dry storage duration, gibberellic acid, and priming on germination of Aster koraiensis at low temperature Horticulture Environment and Biotechnology 51(6): 471-476.
  13. Klein, J.D. and Sachs, M. 1992. Measurement of water uptake and volatile production by coated wheat seeds and subsequent seedling growth. Seed Science & Technology 20: 299-305.
  14. Lee, C.B. 2003. An Illustrated Book of the Korean Flora. Hyangmun Press, Seoul.
  15. Millier, W.F. and Bensin, R.F. 1974. Tailoring pelleted seed coatings to soil moisture conditions. New York's Food Life Science 7: 20-23.
  16. Nam, B.M., Kim, J.Y., Jeong, S., Lee, J.H., Nam, M.J., Oh, B.U. and Chung, G.Y. 2015. A flora of vascular plant in Mt. Cheongnyangsan (Bonghwa-gun, Andong-si). Korean Journal of Plant Resources 28(5): 616-634. https://doi.org/10.7732/kjpr.2015.28.5.616
  17. Nomura, T., Ueno, M., Yamada, Y., Takatsuto, S., Takeuchi, Y. and Yokota, T. 2007. Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiology 143(4): 1680-1688. https://doi.org/10.1104/pp.106.093096
  18. Paparella, S., Araujo, S.S., Ross, G., Wijayasinghe, M., Carbonera1, D. and Balestrazzi, A. 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports 34(8): 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
  19. Pedrini, S., Merritt, D.J., Stevens, J. and Dixon, K. 2017. Seed coating: science or marketing spin? Trends in Plant Science 22(2): 106-116. https://doi.org/10.1016/j.tplants.2016.11.002
  20. Peishi, Z., Plummer, J.A., Turner, D.W., Bell, D.T. and Choengsaat, D. 1999. Low- and high-temperature storage effects on viability and germinability of seeds of three Australian Asteraceae. Australian Journal of Botany 47(2): 265-275. https://doi.org/10.1071/BT97105
  21. Shin, E.H. and Park, S.J. 2014. Component analysis and antioxidant activity of Aster koraiensis Nakai. Journal of the Korean Society of Food Science and Nutrition 43(1): 74-79. https://doi.org/10.3746/jkfn.2014.43.1.074
  22. Taylor, A.G., Allen, P.S., Bennett, A.M., Bradford, K.J., Burns, J.S. and Misra, M.K. 1998. Seed enhancements. Seed Science Research 8: 245-256. https://doi.org/10.1017/S0960258500004141
  23. Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T. and Okamoto, S. 2003. Physiological roles of brassinosteroids in early growth of Arabidopsis: Brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. Journal of Plant Growth Regulation 22(3): 259-271. https://doi.org/10.1007/s00344-003-0119-3
  24. Wang, B., Zhang, J., Xia, X. and Zhang, W.H. 2011. Ameliorative effect of brassinosteroid and ethylene on germination of cucumber seeds in the presence of sodium chloride. Plant Growth Regulation 65(2): 407-413. https://doi.org/10.1007/s10725-011-9595-9
  25. Yusuf, M., Fariduddin, Q. and Ahmad, A. 2012. 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: A shotgun approach. Plant Physiology Biochemistry 57: 143-153. https://doi.org/10.1016/j.plaphy.2012.05.004