DOI QR코드

DOI QR Code

A Study on the Performance of Deep learning-based Automatic Classification of Forest Plants: A Comparison of Data Collection Methods

데이터 수집방법에 따른 딥러닝 기반 산림수종 자동분류 정확도 변화에 관한 연구

  • Kim, Bomi (Chungnam Forest Environment Research Institute) ;
  • Woo, Heesung (School of Forestry Sciences and Landscape Architecture, Kyungpook National University) ;
  • Park, Joowon (School of Forestry Sciences and Landscape Architecture, Kyungpook National University)
  • 김보미 (충청남도 산림자원연구소) ;
  • 우희성 (경북대학교 산림과학.조경학부) ;
  • 박주원 (경북대학교 산림과학.조경학부)
  • Received : 2019.11.22
  • Accepted : 2020.03.09
  • Published : 2020.03.31

Abstract

The use of increased computing power, machine learning, and deep learning techniques have dramatically increased in various sectors. In particular, image detection algorithms are broadly used in forestry and remote sensing areas to identify forest types and tree species. However, in South Korea, machine learning has rarely, if ever, been applied in forestry image detection, especially to classify tree species. This study integrates the application of machine learning and forest image detection; specifically, we compared the ability of two machine learning data collection methods, namely image data captured by forest experts (D1) and web-crawling (D2), to automate the classification of five trees species. In addition, two methods of characterization to train/test the system were investigated. The results indicated a significant difference in classification accuracy between D1 and D2: the classification accuracy of D1 was higher than that of D2. In order to increase the classification accuracy of D2, additional data filtering techniques were required to reduce the noise of uncensored image data.

최근 급변하는 컴퓨터 기술의 발전을 통해 컴퓨터 비전과 머신러닝을 이용한 사물인식 기법이 다양한 학문 분야에서 사용되고 있다. 국내의 연구 사례를 보면 주로 대면적 산림을 분석하기 위한 이미지 학습 및 객체인식 기법이 사용되는 반면 개체목 단위의 수종 분류 및 특징을 학습하는 연구는 아직 미미한 실정이다. 이에 본 연구는 한국의 침엽수 5종을 대상으로 이미지 학습을 통한 자동분류 연구의 가능성을 분석해 보았다. 데이터 형태에 따른 분류 결과의 차이를 분석하기 위하여 산림전문가가 직접 촬영한 영상(D1)과 웹크롤링을 이용한 영상(D2)을 사용하여 수종 분류를 실시하였다. 그 결과 D1과 D2의 분류 정확도에 유의미한 차이가 있는 것으로 나타났으며, D1은 D2보다 높은 분류 정확도를 나타냈다. 또한, D2의 분류 정확도를 높이기 위해서는 검열되지 않은 영상 데이터의 노이즈를 줄이기 위한 추가 데이터 필터링 기법이 필요한 것으로 사료된다.

Keywords

References

  1. Aakif, A. and Khan, M.F. 2015. Automatic classification of plants based on their leaves. Biosystems Engineering 139; 66-75. https://doi.org/10.1016/j.biosystemseng.2015.08.003
  2. Backes, A.R., Casanova, D. and Bruno, O.M. 2009. Plant leaf identification based on volumetric fractal dimension. International Journal of Pattern Recognition and Artificial Intelligence 23(6): 1145-1160. https://doi.org/10.1142/S0218001409007508
  3. Beghin, T., Cope, J.S., Remagnino, P. and Barman, S. 2010. Shape and texture based plant leaf classification. Lecture Notes in Computer Science 6475(2): 345-353.
  4. Charters, J., Wang, Z., Chi, Z., Tsoi, A.C., and Feng, D.D. 2014. Eagle: A novel descriptor for identifying plant species using leaf lamina vascular features. IEEE International Conference on Multimedia and Expo Workshops (ICMEW). 2014: 1-6.
  5. Goeau, H.G., Bonnet, P., and Joly, A. 2017. Plant identification based on noisy web data: the amazing performance of deep learning. Conference and Labs of the Evaluation Forum. Sep 2017; hal-01629183.
  6. Grinblat, G.L., Uzal, L.C., Larese, M.G. and Granitto, P.M. 2016. Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture 127: 418-424. https://doi.org/10.1016/j.compag.2016.07.003
  7. Hall, D., McCool, C., Dayoub, F., Sunderhauf, N., and Upcroft, B. 2015. Evaluation of features for leaf classification in challenging conditions. 2015 IEEE Winter Conference on Applications of Computer Vision. 797-804.
  8. Kalyoncu, C. and Toygar, O. 2015. Geometric leaf classification. Computer Vision and Image Understanding 133: 102-109. https://doi.org/10.1016/j.cviu.2014.11.001
  9. Kim, N.K., Lee, J.W., Kim, J.I. and Hong, S.H. 2018. Exotic plants classification using the transfer learning. The Institute of Electronics and Information Engineers 2018 (11): 477-480.
  10. Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C. and Soares, J.V. 2012. Leafsnap: A computer vision system for automatic plant species identification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7573(2): 502-516.
  11. Larese, M.G., Namías, R., Craviotto, R.M., Arango, M.R., Gallo, C. and Granitto, P.M. 2014. Automatic classification of legumes using leaf vein image features. Pattern Recognition 47(1): 158-168. https://doi.org/10.1016/j.patcog.2013.06.012
  12. Lee., B.Y., Kim, J.S., Chung, G.Y. and Kim, J.H. 2018. Plant taxonomy. Korea National Open University press, Seoul. p. 1.
  13. Lee, S.H., Chan, C.S., Mayo, S.J. and Remagnino, P. 2017. How deep learning extracts and learns leaf features for plant classification. Pattern Recognition 71: 1-13. https://doi.org/10.1016/j.patcog.2017.05.015
  14. Liu, X., Xu, F., Sun, Y., Zhang, H., and Chen, Z. 2018. Convolutional recurrent neural networks for observation- centered plant identification. Journal of Electrical and Computer Engineering 2018: 1-7.
  15. Olsen, A., Han, S., Calvert, B., Ridd, P. and Kenny, O. 2015. In situ leaf classification using histograms of oriented gradients. 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA). pp. 1-8.
  16. Park, Y.M., Gang, S.M., Chae, J.H. and Lee, J.J. 2018. Classification method of plant leaf using densenet. Journal of Korea Multimedia Society 21(5): 571-582. https://doi.org/10.9717/KMMS.2018.21.5.571
  17. Rashad, M., El-Desouky, B. and Khawasik, M.S. 2011. Plants images classification based on textural features using combined classifier. International Journal of Computer Science and Information Technology 3(4): 93-100. https://doi.org/10.5121/ijcsit.2011.3407
  18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. 2016. Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826.
  19. Yoon, Y.C., Sang, J.H., and Park, S.M. 2018. Trends of plant image processing technology. Electronics and TelecommuniCaTions Trends 33: 54-60. https://doi.org/10.22648/ETRI.2018.J.330406
  20. Zhang, S., Zhang, C., Zhu, Y., and You, Z. 2017. Discriminant WSRC for large-scale plant species recognition. Computational Intelligence and Neuroscience 2017: 9581292.