References
- Aakif, A. and Khan, M.F. 2015. Automatic classification of plants based on their leaves. Biosystems Engineering 139; 66-75. https://doi.org/10.1016/j.biosystemseng.2015.08.003
- Backes, A.R., Casanova, D. and Bruno, O.M. 2009. Plant leaf identification based on volumetric fractal dimension. International Journal of Pattern Recognition and Artificial Intelligence 23(6): 1145-1160. https://doi.org/10.1142/S0218001409007508
- Beghin, T., Cope, J.S., Remagnino, P. and Barman, S. 2010. Shape and texture based plant leaf classification. Lecture Notes in Computer Science 6475(2): 345-353.
- Charters, J., Wang, Z., Chi, Z., Tsoi, A.C., and Feng, D.D. 2014. Eagle: A novel descriptor for identifying plant species using leaf lamina vascular features. IEEE International Conference on Multimedia and Expo Workshops (ICMEW). 2014: 1-6.
- Goeau, H.G., Bonnet, P., and Joly, A. 2017. Plant identification based on noisy web data: the amazing performance of deep learning. Conference and Labs of the Evaluation Forum. Sep 2017; hal-01629183.
- Grinblat, G.L., Uzal, L.C., Larese, M.G. and Granitto, P.M. 2016. Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture 127: 418-424. https://doi.org/10.1016/j.compag.2016.07.003
- Hall, D., McCool, C., Dayoub, F., Sunderhauf, N., and Upcroft, B. 2015. Evaluation of features for leaf classification in challenging conditions. 2015 IEEE Winter Conference on Applications of Computer Vision. 797-804.
- Kalyoncu, C. and Toygar, O. 2015. Geometric leaf classification. Computer Vision and Image Understanding 133: 102-109. https://doi.org/10.1016/j.cviu.2014.11.001
- Kim, N.K., Lee, J.W., Kim, J.I. and Hong, S.H. 2018. Exotic plants classification using the transfer learning. The Institute of Electronics and Information Engineers 2018 (11): 477-480.
- Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C. and Soares, J.V. 2012. Leafsnap: A computer vision system for automatic plant species identification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7573(2): 502-516.
- Larese, M.G., Namías, R., Craviotto, R.M., Arango, M.R., Gallo, C. and Granitto, P.M. 2014. Automatic classification of legumes using leaf vein image features. Pattern Recognition 47(1): 158-168. https://doi.org/10.1016/j.patcog.2013.06.012
- Lee., B.Y., Kim, J.S., Chung, G.Y. and Kim, J.H. 2018. Plant taxonomy. Korea National Open University press, Seoul. p. 1.
- Lee, S.H., Chan, C.S., Mayo, S.J. and Remagnino, P. 2017. How deep learning extracts and learns leaf features for plant classification. Pattern Recognition 71: 1-13. https://doi.org/10.1016/j.patcog.2017.05.015
- Liu, X., Xu, F., Sun, Y., Zhang, H., and Chen, Z. 2018. Convolutional recurrent neural networks for observation- centered plant identification. Journal of Electrical and Computer Engineering 2018: 1-7.
- Olsen, A., Han, S., Calvert, B., Ridd, P. and Kenny, O. 2015. In situ leaf classification using histograms of oriented gradients. 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA). pp. 1-8.
- Park, Y.M., Gang, S.M., Chae, J.H. and Lee, J.J. 2018. Classification method of plant leaf using densenet. Journal of Korea Multimedia Society 21(5): 571-582. https://doi.org/10.9717/KMMS.2018.21.5.571
- Rashad, M., El-Desouky, B. and Khawasik, M.S. 2011. Plants images classification based on textural features using combined classifier. International Journal of Computer Science and Information Technology 3(4): 93-100. https://doi.org/10.5121/ijcsit.2011.3407
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. 2016. Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826.
- Yoon, Y.C., Sang, J.H., and Park, S.M. 2018. Trends of plant image processing technology. Electronics and TelecommuniCaTions Trends 33: 54-60. https://doi.org/10.22648/ETRI.2018.J.330406
- Zhang, S., Zhang, C., Zhu, Y., and You, Z. 2017. Discriminant WSRC for large-scale plant species recognition. Computational Intelligence and Neuroscience 2017: 9581292.