접합부를 포함한 PAN-전골반암 VMAT 치료 계획 시 콜리메이터 각도의 영향에 관한 고찰

A study on the effect of collimator angle on PAN-Pelvis volumetric modulated arc therapy (VMAT) including junction

  • 김현영 (분당서울대학교병원 방사선종양학과) ;
  • 장남준 (분당서울대학교병원 방사선종양학과) ;
  • 정해윤 (분당서울대학교병원 방사선종양학과) ;
  • 정윤주 (분당서울대학교병원 방사선종양학과) ;
  • 원희수 (분당서울대학교병원 방사선종양학과) ;
  • 석진용 (분당서울대학교병원 방사선종양학과)
  • Kim, Hyeon Yeong (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Chang, Nam Jun (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Jung, Hae Youn (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Jeong, Yun Ju (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Won, Hui Su (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Seok, Jin Yong (Department of Radiation Oncology, Seoul national university bundang hospital)
  • 발행 : 2020.12.27

초록

목 적: 대동맥 주위 림프절(PAN)을 포함한 전골반암의 다중치료 중심점(multi-isocenter) 용적 변조 회전 방사선 치료 계획 시 콜리메이터 각도의 변화가 치료 계획의 질, 접합부에서의 선량 재현성, 그리고 접합부의 환자 자세 오차에 미치는 영향에 대해 알아보고자 한다. 대상 및 방법: PAN을 포함한 전골반암 환자 10명을 대상으로 하였다. Eclipse(version 13.7) 치료계획 시스템에서 HD MLC가 장착된 Truebeam STx를 사용하여, 기본으로 설정된 콜리메이터 각도인 10° 외에 20°, 30°, 45°로 변화시키고, 그 외 모든 치료 계획 조건은 동일하게 설정하여 치료 계획을 수립하였다. 수립된 치료 계획은 계획표적용적의 coverage와 조사범위지표(CVI), 균질성 지표(HI)를 평가하였고, 정상조직은 각 부위별로 임상에서 사용하고 있는 지표로 비교하였다. 접합부의 선량 재현성 평가를 위해 파머형 전리함을 삽입한 고체물 팬텀을 이용하여 절대 선량을 측정하였다. 환자 자세 오차에 따른 영향을 알아보기 위해 치료계획 시스템에서 각도별로 등중심점의 위치를 종축방향(in, out)으로 1~3mm 임의로 이동하고 접합부에 가상의 체적을 설정하여 선량 변화를 평가하였다. 결 과: CVI 평균값은 45°에서 PTV-45 0.985±0.004, PTV-55 0.998±0.003, HI 평균값은 45°에서 PTV-45 1.140±0.074, PTV-55 1.031±0.074로 1에 가장 가까운 값을 보였다. 결정 장기는 10°와 비교하여 45°에서 콩팥의 V20Gy이 9.66%, 방광의 평균선량과 V30이 1.88%, 2.16% 감소하였다. 치료 계획과 실측정한 접합부의 선량값의 차이는 0.3% 이내로 모두 허용오차범위 내에 들어왔다. 환자 자세 오차로 인한 접합부에서 선량변화량은 in 3mm 이동시 최대 선량이 10°, 20°, 30°, 45°에서 14.56%, 9.88%, 8.03%, 7.05%로 증가하였으며, out 3mm 이동시 최소 선량은 10°, 20°, 30°, 45°에서 13.18%, 10.91%, 8.42%, 4.53%로 감소하였다. 결 론: PTV의 CVI, HI 및 결정 장기 보호 면에서 콜리메이터 각도가 증가할수록 전반적으로 개선된 수치를 보였다. 접합부의 환자 자세 오차 영향은 각도가 커질수록 그 차이가 줄어들어 환자 자세 오차에 대한 불안함을 어느 정도 개선하는데 도움이 될 것이라 생각한다. 결론적으로 콜리메이터 각도는 다중치료 중심점 VMAT 치료 계획의 질 및 접합부 선량에 영향을 줄 수 있는 인자임을 인지하고 치료계획 시 콜리메이터 각도 설정에 신중을 기해야 할 것으로 사료된다.

Purpose: To investigate the effect of collimator angle on plan quality of PAN-Pelvis Multi-isocenter VMAT plan, dose reproducibility at the junction and impact on set-up error at the junction. Material and method: 10 adult patients with whole pelvis cancer including PAN were selected for the study. Using Trubeam STx equipped with HD MLC, we changed the collimator angle to 20°, 30°, and 45° except 10° which was the default collimator angle in the Eclipse(version 13.7) and all other treatment conditions were set to be the same for each patient and four plans were established also. To evaluate these plans, PTV coverage, coverage index(CVI) and homogeneity index (HI) were compared and clinical indicators for each treatment sites in normal tissues were analyzed. To evaluate dose reproducibility at the junction, the absolute dose was measured using a Falmer type ionization chamber and dose changes at the junction were evaluated by moving the position of the isocenter in and out 1~3mm and setting up the virtual volume at the junction. Result: CVI mean value was PTV-45 0.985±0.004, PTV-55 0.998±0.003 at 45° and HI mean value was PTV-45 1.140±0.074, and PTV-55 1.031±0.074 at 45° which were closest to 1. V20Gy of the kidneys decreased by 9.66% and average dose of bladder and V30 decreased by 1.88% and 2.16% at 45° compared to 10° for the critical organs. The dose value at the junction of the plan and the actual measured were within 0.3% and within tolerance. At the junction, due to set-up error the maximum dose increased to 14.56%, 9.88%, 8.03%, and 7.05%, at 10°, 20°, 30°, 45°, and the minimum dose decreased to 13.18%, 10.91%, 8.42%, and 4.53%, at 10°, 20°, 30°, 45° Conclusion: In terms of CVI, HI of PTV and critical organ protection, overall improved values were shown as the collimator angle increased. The impact on set-up error at the junction by collimator angle decreased as the angle increased and it will help improve the anxiety about the set up error. In conclusion, the collimator angle should be recognized as a factor that can affect the quality of the multi-isocenter VMAT plan and the dose at the junction, and be careful in setting the collimator angle in the treatment plan.

키워드

참고문헌

  1. Otto, Karl. "Volumetric modulated arc therapy: IMRT in a single gantry arc." Medical physics 35.1 (2008): 310-317. https://doi.org/10.1118/1.2818738
  2. Zhang, Wu-Zhe, et al. "A Dosimetric study of using fixed-jaw volumetric modulated arc therapy for the treatment of nasopharyngeal carcinoma with cervical lymph node metastasis." PloS one 11.5 (2016).
  3. Otto K, Clark BG. Enhancement of IMRT delivery through MLC rotation. Phys Med Biol. 2002; 47: 3997. https://doi.org/10.1088/0031-9155/47/22/307
  4. Tas, B., Bilge, H., & Ozturk, S. T. (2016, March). An investigation of the dose distribution effect related with collimator angle for VMAT method. In AIP Conference Proceedings (Vol. 1722, No. 1, p. 150003). AIP Publishing LLC.
  5. Kim, J. I., Ahn, B. S., Choi, C. H., Park, J. M., & Park, S. Y. (2018). Optimal collimator rotation based on the outline of multiple brain targets in VMAT. Radiation Oncology, 13(1), 88. https://doi.org/10.1186/s13014-018-1039-5
  6. Kim, Yong Ho, et al. "Effect of collimator angles on the dosimetric results of volumetric modulated arc therapy planning for patients with a locally-advanced nasopharyngeal carcinoma." Journal of the Korean Physical Society 70.5 (2017): 539-544. https://doi.org/10.3938/jkps.70.539
  7. Son, Sang Jun, et al. "Evaluating efficiency of Coaxial MLC VMAT plan for spine SBRT." The Journal of Korean Society for Radiation Therapy 26.2 (2014): 313-320.
  8. Tas, B., Bilge, H., & Ozturk, S. T. (2016). An investigation of the dose distribution effect related with collimator angle in volumetric arc therapy of prostate cancer. Journal of Medical Physics/Association of Medical Physicists of India, 41(2), 100. https://doi.org/10.4103/0971-6203.181635
  9. Li, M. H., Huang, S. F., Chang, C. C., Lin, J. C., & Tsai, J. T. (2018). Variations in dosimetric distribution and plan complexity with collimator angles in hypofractionated volumetric arc radiotherapy for treating prostate cancer. Journal of applied clinical medical physics, 19(2), 93-102. https://doi.org/10.1002/acm2.12249
  10. DIMITRI, F. Y., et al. Organ at risk dose verification in nasopharyngeal cancer VMAT planning with collimator comparison between single arc and double arc. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018. p. 012024.
  11. Isa M, Ur Rehman J, Afzal M, Chow J. Dosimetric dependence on the collimator angle in prostate volumetric modulated arc therapy. Int J Cancer Ther Oncol. 2014; 2: 020419. https://doi.org/10.14319/ijcto.0204.19
  12. Slosarek, K., Braclik, I., Leszczynski, W., Kopczynska, J., Osewski, W., & Wendykier, J. (2019). IMRT/VMAT dose distributions generated for HD® and Millennium® collimators TrueBeam® and Clinac® accelerators. Reports of Practical Oncology & Radiotherapy, 24(1), 20-27. https://doi.org/10.1016/j.rpor.2018.09.001
  13. Lee, Y. K., Brooks, C. J., Bedford, J. L., Warrington, A. P., & Saran, F. H. (2012)Development and evaluation of multiple isocentric volumetric modulated arc therapy technique for craniospinal axis radiotherapy planning. International Journal of Radiation Oncology* Biology* Physics, 82(2), 1006-1012. https://doi.org/10.1016/j.ijrobp.2010.12.033
  14. Murtaza, G., Mehmood, S., Rasul, S., Murtaza, I., & Khan, E. U. (2018). Dosimetric effect of limited aperture multileaf collimator on VMAT plan quality: A study of prostate and head-and-neck cancers. Reports of Practical Oncology & Radiotherapy, 23(3), 189-198. https://doi.org/10.1016/j.rpor.2018.02.006
  15. Kim, J. I., Ahn, B. S., Choi, C. H., Park, J. M., & Park, S. Y. (2018). Optimal collimator rotation based on the outline of multiple brain targets in VMAT. Radiation Oncology, 13(1), 88. https://doi.org/10.1186/s13014-018-1039-5
  16. Zeng, G. G., et al. "A two isocenter IMRT technique with a controlled junction dose for long volume targets." Physics in Medicine & Biology 52.15 (2007): 4541. https://doi.org/10.1088/0031-9155/52/15/012
  17. Meyer, J., Richter, A., Pfreundner, L., Guckenberger, M., Krieger, T., Schwab, F., & Flentje, M. (2009). An interlaced IMRT technique for elongated tumor volumes. Medical Dosimetry, 34(2), 170-178. https://doi.org/10.1016/j.meddos.2008.11.004
  18. Lin, H., Ding, X., Kirk, M., Liu, H., Zhai, H., HillKayser, C. E., ... & McDonough, J. (2014). Supine craniospinal irradiation using a proton pencil beam scanning technique without match line changes for field junctions. International Journal of Radiation Oncology* Biology* Physics, 90(1), 71-78.
  19. Wang, K., Meng, H., Chen, J., Zhang, W., & Feng, Y. (2018). Plan quality and robustness in field junction region for craniospinal irradiation with VMAT. Physica Medica, 48, 21-26. https://doi.org/10.1016/j.ejmp.2018.03.007
  20. Strojnik, Andrej, Ignasi Mendez, and Primoz Peterlin. "Reducing the dosimetric impact of positional errors in field junctions for craniospinal irradiation using VMAT." Reports of Practical Oncology & Radiotherapy 21.3 (2016): 232-239. https://doi.org/10.1016/j.rpor.2016.03.002
  21. Lee, Seungchul, and Youngjae Kim. "The Effect of Dose Distribution under Treatment Techniques on Cerebrospinal Irradiation." Journal of the Korean Society of Radiology 10.1 (2016): 21-28. https://doi.org/10.7742/jksr.2016.10.1.21
  22. McVicar, Nevin. "Improved Volumetric Modulated Arc Therapy Field Junctions Using In Silico Base Plans: Application to Craniospinal Irradiation." Journal of Medical Imaging and Radiation Sciences 49.3 (2018): 301-308. https://doi.org/10.1016/j.jmir.2018.05.005
  23. Myers, Pamela, et al. "Evaluation of localization errors for craniospinal axis irradiation delivery using volume modulated arc therapy and proposal of a technique to minimize such errors." Radiotherapy and Oncology 108.1 (2013): 107-113. https://doi.org/10.1016/j.radonc.2013.05.026
  24. Otto K. Letter to the Editor on 'Single-Arc IMRT?' phys Med Biol2009;54:L37-41. https://doi.org/10.1088/0031-9155/54/8/L03
  25. MOON, Sun Young, et al. Comparison of Dosimetric Parameters of Patient with Large and Pendulous Breast Receiving Breast Radiotherapy in the Prone versus Supine Position. Prog Med Phys DE, 2015, 26: 234-240. https://doi.org/10.14316/pmp.2015.26.4.234