DOI QR코드

DOI QR Code

Soil Resilience and Threat Factors Related to Agricultural Environment

농업환경 분야에서의 토양 리질리언스와 그 위협 요인

  • Kim, Min-Suk (O-Jeong Eco Resilience Institute, Korea University) ;
  • Min, Hyun-Gi (Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechonology, Korea University) ;
  • Hyun, Seung-Hun (Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechonology, Korea University) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechonology, Korea University)
  • 김민석 (고려대학교 오정에코리질리언스연구원) ;
  • 민현기 (고려대학교 환경생태공학과) ;
  • 현승훈 (고려대학교 환경생태공학과) ;
  • 김정규 (고려대학교 환경생태공학과)
  • Received : 2019.11.28
  • Accepted : 2020.02.13
  • Published : 2020.03.31

Abstract

Soils are the basis for plant rooting and ecosystem creation, the site of life for humankind, and require much time for their creation, so there will be no disagreement about the importance and necessity of soil conservation and management. Soil resilience is the ability of soils to maintain their original structure and function (resistance and recovery) from various kinds of disturbances, and is an indispensable field of study that prepares for a future with high uncertainty and unpredictability. Therefore, this study summarizes the concept and necessity of soil resilience, which is not yet widely known in Korea, and the contents of previous studies were reviewed. This study was carried out with the aim of contributing to lowering the threshold for entry into resilience research for domestic and foreign researchers who are new to soil resilience. In the first part of this study, we introduced resilience and soil resilience, and in the second part, we summarized the main causes of stress or disturbance that have been studied by many soil resilience researches. This makes it easy to find the references authors need. It is virtually impossible to find the same soil environment because there is no same area on the earth with all the same rock, climate, human activity, and culture, suggesting that each soil has its own uniqueness. Therefore, the researcher who wants to utilize the results of this study should take into consideration the specificity of the soil and the region to which the soil resilience is introduced, and modify it if necessary. In addition, efforts should be made to strengthen the network of soil resilience researchers to create a basis for sharing and actively utilizing the research results.

토양은 식물들이 뿌리 내려 생태계를 조성할 수 있게 하는 근간이자 인류의 삶의 터전으로, 그 생성에 많은 시간을 필요로 하기 때문에 토양의 보존과 관리가 중요하다. 토양 리질리언스는 다양한 종류의 교란으로부터 토양이 본래의 구조와 기능을 유지하는 능력으로, 불확실성과 예측불가능성이 높은 미래에 대비할 수 있는 연구 분야이다. 따라서 본 연구는 국내에서 아직 널리 알려지지 않은 토양 리질리언스의 개념과 필요성, 그리고 기존에 수행된 국외 연구 내용들을 정리함으로써, 토양리질리언스를 처음 접하는 국내·외 연구자들에게 리질리어스 연구의 진입 문턱 (threshold)을 낮추는데 기여할 것을 목적으로 수행되었다. 본 연구 전반부에는 리질리언스와 토양 리질리언스에 대해 소개하였으며, 후반부에는 많은 토양 리질리언스 선행연구들이 관심을 가진 주요 스트레스 원인을 자연적 요인과 인위적 요인으로 구분하여 정리하였다. 지구상에는 모암, 기후, 인간의 활동, 문화가 모두 동일한 지역은 없기 때문에 각 토양마다 고유의 특수성을 갖고 있다. 따라서 본 연구 결과 활용하고자 하는 연구자는 토양 리질리언스를 도입하고자 하는 지역의 특수성을 고려하여 활용해야 할 것이다. 또한 토양 리질리언스 연구자들의 네트워크를 강화하여 연구결과를 공유하고 적극 활용할 수 있는 기반을 만드는 데 노력해야 할 것이다.

Keywords

References

  1. Ajayi, A.E. and Horn, R. 2016. Transformation of ex-arable land to permanent grassland promotes pore rigidity and mechanical soil resilience. Ecological Engineering 94: 592-598. https://doi.org/10.1016/j.ecoleng.2016.06.104
  2. Allen-Morley, C.R. and Coleman, D.C. 1989. Resilience of soil biota in various food webs to freezing perturbations. The Ecological Society of America 70(4): 1127-1141.
  3. Anan'eva, N.D., Blagodatskaya, E.V. and Demkina, T.S. 1997. The effect of drying-moistening and freezingthawing on soil microbial communities' resilience. Eurasian Soil Science 30(9): 1010-1014.
  4. Archer, S. and Stokes, C. 2000. Stress, disturbances and change in rangeland ecosystems in rangeland desertification. Springer, Dordrecht, Netherland.
  5. Arthur, E., Schjonning, P., Moldrup, P. and de Jonge, L.W. 2012. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils. Geoderma 173-174: 50-60. https://doi.org/10.1016/j.geoderma.2012.01.007
  6. Austin, A.T. and Vitousek, P. 1998. Nutrient dynamics on a precipitation gradient in Hawaii. Oecologica 113: 519-529. https://doi.org/10.1007/s004420050405
  7. Avramides, E.J., Christou, M. and Jones, D.L. 2009. Resilience of soil microbial activity and of amino acid dynamics to the removal of plant carbon inputs during winter. Scientia Agricola 66(1): 132-135. https://doi.org/10.1590/S0103-90162009000100019
  8. Ayala-Orozco, B., Gavito, M.E., Mora, F., Siddique, I., Balvanera, P., Jaramillo, V.J., Cotler, H., Romero-Doque, L.P. and Martinez-Meyer, E. 2017. Resilience of soil properties to land-use change in a tropical dry forest ecosystem. Land Degradation and Development 29(2): 315-325.
  9. Barba, J., Yuste, J.C., Poyatos, R., Hanssens, I.A. and Lloret, F. 2016. Strong resilience of soil respiration components to drought-induced die-off resulting in forest secondary succession. Oecologia 182(1): 27-41. https://doi.org/10.1007/s00442-016-3567-8
  10. Bengtsson, J. 2002. Disturbance and resilience in soil animal communities. Eurasian Soil Biology 38: 119-125. https://doi.org/10.1016/S1164-5563(02)01133-0
  11. Berard, A., Bouchet, T., Sevenier, G., Pablo, A.L. and Gros, R. 2011. Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves. Eurasian Soil Science 47(6): 333-342.
  12. Bhattacharyya, P.N., Goswami, M.P. and Bhattacharyya, L.H. 2016. Persepctive of beneficial microbes in agriculture under changing climatic scenario: a review. Journal of Phytology 8: 26-41. https://doi.org/10.19071/jp.2016.v8.3022
  13. Bigwood, D.W. and Inouye, D.W. 1988. Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69: 497-507. https://doi.org/10.2307/1940448
  14. Blanco, H. and Lal, R. 2010. Soil Resilience and Conservation. In, Balnco, H. and Lal, R. (eds.), Principles of soil conservation and management. Springer, Berlin, Germany. pp. 425-447.
  15. Blum, W.E.H. and Santelises, A.A. 1994. A concept of sustainability and resilience based on soil functions. In, Greenland, D.J. and Szabolcs, I. (eds.), Soil resilience and sustainable land use. CAB Int., Wallinford, UK. pp. 535-542.
  16. Buondonno, A., Capra, G.F., Coppola, E., de Riso, S. Duras, M.G., Selis, G., Vacca, S. and Colella, C. 2008. Comparative resilience of soil and natural zeolite against adverse features of a municipal sewage. A preliminary investigation. Il Nuovo Cimento B 123(10): 1435-1447.
  17. Capon, S.J. and Brock, M.A. 2006. Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. Freshwater Biology 51: 206-223. https://doi.org/10.1111/j.1365-2427.2005.01484.x
  18. Capra, G.F., Buondonno, A., Coppola, E., Duras, M.G., Vacca, S. and Colella, C. 2011. Zeolitized tuffs in pedotechniques to improve soil resilience against the impact of treatment by municipal sewage: balance of nutrient and noxious cations. Clay Minerals 46(2): 261-278. https://doi.org/10.1180/claymin.2011.046.2.261
  19. Carter, M.R., Noronha, C., Peters, R.D. and Kimpinski, J. 2009. Influence of conservation tillage and crop rotation on the resilience of an intensive long-term potato cropping system: restoration of soil biological properties after potato phase. Agriculture, Ecosystems and Environment 133(1-2): 32-39. https://doi.org/10.1016/j.agee.2009.04.017
  20. Carvalho, A.A., Silva, T.G.F., Souza, L.S.B., Moura, S.B., Araujo, G.G.L. and Toledo, M.P.S. 2017. Soil moisture in forage cactus plantations with improvement practices for their resilience. Revista Brasileira de Engenharia Agricola e Ambiental 21(7): 481-487. https://doi.org/10.1590/1807-1929/agriambi.v21n7p481-487
  21. Chaer, G., Fernandes, M., Myrold, D. and Bottomley, P. 2009. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microbial Ecology 58(2): 414-424. https://doi.org/10.1007/s00248-009-9508-x
  22. Cook, B.I., Miller, R.L. and Seager, R. 2009. Amplification of the north American "Dust Bowl" drought through human induced land degradation. In, Proceedings of the National Academy of Sciences of the USA 106(13): 4997-5001. https://doi.org/10.1073/pnas.0810200106
  23. Cubasch, U., Meehl, G.A., Boer, G.J., Stouffer, R.J., Dix, M., Noda, A., Senior, C.A., Raper, S. and Yap, K.S. 2001. Projections of future climate changes. In, Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linder, P.J., Dai, X., Maskell, K. and Johnson, C.A. (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK.
  24. Dai, Z., Chu, A., Du, J., Stive, M. and Hong, Y. 2010. Assessment of extreme drought and human interference on baseflow of the Yangtze River. Hydrological Procsses 24(6): 749-757. https://doi.org/10.1002/hyp.7505
  25. Dale, A.M. and Buckner, R.L. 1997. Selective averaging of rapidly presented individual trials using fMRI. Hum. Brain Mapp. 5(5): 329-340. https://doi.org/10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
  26. Davoudi, S., Shaw, K., Haider, L.J., Quinlan, A.E., Peterson, G.D., Wilkinson, C., Funfgeld, H., McEvoy, D., Porter, L. and Davoudi, S. 2012. Resilience: A bridging concept or a dead end? "Reframing" Resilience: Challenges for planning theory and practice interacting traps" Resilience assessment of a pasture management system in northern Afghanistan urban resilience: What dose it mean in planning practice? Resilience as a useful concept for climate change adaptation? The politics of resilience for planning: A cautionary note. Planning Theory and Practice 13(2): 299-333. https://doi.org/10.1080/14649357.2012.677124
  27. de Andrade Bonetti, J., Anghinoni, I., de Moraes, M.T. and Fink, J.R. 2017. Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil and Tillage Research 174: 104-112. https://doi.org/10.1016/j.still.2017.06.008
  28. de Moraes Sa, J.C., Tivet, F., Lal, R., Briedis, C., Hartman, D.C., dos Santos, J.Z. and dos Santos, J.B. 2014. Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian oxisol. Soil and Tillage Research 136: 38-50. https://doi.org/10.1016/j.still.2013.09.010
  29. de Vries, F.T., Liiri, M.E., Bjornlund, L., Bowker, M.A., Christensen, S., Setala, H.M. and Bardgett, R.D. 2012. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change 2: 276-280. https://doi.org/10.1038/nclimate1368
  30. del Mar Alguacil, M., Torrecillas, E., Torres, P., Garcia-Orenes, F. and Roldan, A. 2012. Long-term effects of irrigation with waste water on soil AM fungi diversity and microbial activities: the implications for agroecosystem resilience. Plos One 7(10). e47680. https://doi.org/10.1371/journal.pone.0047680
  31. Demkina, T.S. and Ananeva, N.D. 1998. The influence of long-term fertilizer application on the respiration activity and resilience of soil microbial communities. Eurasian Soil Science 3(11): 1256-1263.
  32. Doran, J.W. and Parkin, T.B. 1994. Defining and assessing soil quality. In, Doran, J.W., Coleman, D.C., Bezdicek, D.F. and Stewart, B.F. (eds.), Defining soil quality for a sustainable environment, SSSA Special Publication No. 35. SSSA, Madison, WI, USA. pp. 3-21.
  33. Doran, J.W. and Parkin, T.B. 1996. Quantitative indicators of soil quality: a minimum data set. In, Doran, J.W. and Jones, A.J. (eds.), Methods for assessing soil quality, SSSA Special Publication No. 49. SSSA, Madison, WI, USA. pp. 25-38.
  34. Doudill, A., Heathwaite, A.L. and Thomas, D.S.G. 1998. Soil water movement and nutrient cycling in semi-arid rangeland: vegetation change and system resilience. Hydrological Processes. 14: 443-459.
  35. Duniway, M.C., Herrick, J.E. and Monger, H.C. 2010. Spatial and temporal variability of plant-available water in calcium carbonate-cemented soils and consequences for arid ecosystem resilience. Oecologia 163(1): 215-226. https://doi.org/10.1007/s00442-009-1530-7
  36. Eswaran, H. 1994. Soil resilience and sustainable land management in the context of AGENDA 21, CAB International, Wallingford.
  37. Fernandez-Pascual, E., Jimenez-Alfaro, B., Hajek, M., Diaz, T.E. and Pritchard, H.W. 2015. Soil thermal buffer and regeneration niche may favour calcaresous fen resilience to climate change. Folia. Geobotanica 50(4): 293-301. https://doi.org/10.1007/s12224-015-9223-y
  38. Forman, R.T. and Godron, M.J.J.W. 1986. Landscape ecology, John Wiley & Sons, New York, USA.
  39. Franco, I., Contin, M., Bragato, G. and De Nobilli, M. 2004. Microbiological resilience of soils contaminated with crude oil. Geoderma 121(1-2): 17-30. https://doi.org/10.1016/j.geoderma.2003.10.002
  40. Frenk, S., Hadar, Y. and Minz, D. 2014. Resilience of soil bacterial community to irrigation with water of different qualities under Mediterranean climate. Environmental Microbiology 16(2): 559-569. https://doi.org/10.1111/1462-2920.12183
  41. Fujino, C., Wada, S., Konoike, T., Toyota, K., Suga, Y. and Ikeda, J.I. 2008. Effect of different organic amendments on the resistance and resilence of the organic matter decomposing ability of soil and the role of aggregated soil structure. Soil Science and Plant Nutrition 54(4): 534-542. https://doi.org/10.1111/j.1747-0765.2008.00281.x
  42. Gregory, A.S., Watts, C.W., Griffiths, B.S., Hallett, P.D., Kuan, H.L. and Whitmore, A.P. 2009. The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma 153(1-2): 172-185. https://doi.org/10.1016/j.geoderma.2009.08.002
  43. Gregory, A.S., Watts, C.W., Whalley, W.R., Kuan, H.L., Griffiths, B.S., Hallett, P.D. and Whitmore, A.P. 2007. Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. Eurasian Journal of Soil Science 58(6): 1221-1232. https://doi.org/10.1111/j.1365-2389.2007.00956.x
  44. Griffiths, B.S., Hallett, P.D., Kuan, H.L., Gregory, A.S., Watts, C.W. and Whitmore, A.P. 2008. Functional resilience of soil microbial communities depends on both soil structure and microbial community composition. Biology and Fertility of Soils 44(5): 745-754. https://doi.org/10.1007/s00374-007-0257-z
  45. Hansen, J., Ruedy, R., Sato, M. and Lo, K. 2010. Global surface temperature change. Reviews of Geophysics 48(4): 1-29.
  46. Hejcman, M., Jouany, C., Cruz, P., Morel, C., Stroia, C. and Theau, J.P. 2014. Sub soil P status could explain the absence of resilience in plant species composition of subalpine grassland 63 years after the last fertilizer application. Scientia Agriculturae Bohemica 45: 45-84.
  47. Herrick, J.E. 2000. Soil quality: an indicator of sustainable land management? Applied Soil Ecology. 15: 75-83. https://doi.org/10.1016/S0929-1393(00)00073-1
  48. Hirsch , P.R., Jhurreea, D., Williams, J.K., Murray, P.J., Scott, T. and Misselbrook, T.H. 2017. Soil resilience and recovery: rapid community responses to management changes. Plant and Soil 412(1-2): 283-297. https://doi.org/10.1007/s11104-016-3068-x
  49. Hobbs, P.R. and Govaerts, B. 2008. How conservation agriculture can contribute to buffering climate change. In, Reynolds, M.P. (ed.), Climate change and crop production. Cabi, Cambridge, MA, USA. pp. 177-199.
  50. Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology, Evolution and Systematics 4: 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245
  51. Holling, C.S. 1986. The resilience of terrestrial ecosystems: local surprise and global change, p. 292-317. In: Clark, W.C. and Munn, R.E. (eds.), Sustainable Development of the Biosphere. Cambridge University Press, Cambridge, UK.
  52. Howell, C.C., Hilton, S., Semple, K.T. and Bending, G.D. 2014. Resistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application. Chemosphere 112: 194-202. https://doi.org/10.1016/j.chemosphere.2014.03.031
  53. Hueso, S., Hernandez, T. and Garcia, C. 2011. Resistance and resilience of the soil microbial biomass to severe drought in semiarid soils: the importance of organic amendments Applied Soil Ecology 50: 27-36. https://doi.org/10.1016/j.apsoil.2011.07.014
  54. IPCC. 2007. Climate change 2007: The scientific basis. Contribution of working group I to the Fourth assessment report of the intergovernmental panel on climate change, edited by S. Solomon et al., Cambridge University Press, New York, USA.
  55. Jeon, E. and Byun, B. 2017. A study on the development and application of community resilience evaluation indicators for responding to climate change. The Geographical Journal of Korea 51(1): 47-58.
  56. Jeon, I., Jung, J.W. and Nam, K. 2017. Changes in soil properties related to soil function due to chemical spills with strong acid and base. Ecology and Resilient Infrastructure 4(4): 193-199. https://doi.org/10.17820/ERI.2017.4.4.193
  57. Jones, R.J.A., Spoor, G. and Thomasson, A.J. 2003. Vulnerability of subsoils in Europe to compaction: a preliminary analysis. Soil and Tillage Research 73(1-2): 131-143. https://doi.org/10.1016/S0167-1987(03)00106-5
  58. Kalnay, E. and Cai, M. 2003. Impact of urbanization and land-use change on climate. Nature 423(6939): 528-531. https://doi.org/10.1038/nature01675
  59. Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F. and Schuman, G.E. 1997. Soil quality: a concept, definition, and framework for evaluation. Soil Science Society of America Journal. 61(1): 4-10. https://doi.org/10.2136/sssaj1997.03615995006100010001x
  60. Kerr, H., Johnson, K., Toll, D.G. and Mansfield, F. 2016. Flood holding capacity: a novel concept to evaluate the resilience of amended soils. Geo-Chicago 2016 (Abstr.)
  61. Kim, J.W. and Jung, C. 2013. Ecological resilience of soil oribatid mite communities after the fire disturbance. Journal of Ecology and Environment 36(2): 117-123. https://doi.org/10.5141/ecoenv.2013.015
  62. Kuan, H.L., Fenwick, C., Glover, L.A., Griffiths, B.S. and Ritz, K. 2006. Functional resilience of microbial communities from perturbed upland grassland soils to further persistent or transient stresses. Soil Biology and Biochemistry 38(8): 2300-2306. https://doi.org/10.1016/j.soilbio.2006.02.013
  63. Kumar, S., Patra, A.K., Singh, D. and Purakayastha, T.J. 2014. Long-term chemical fertilization along with farmyard manure enhances resistance and resilience of soil microbial activity against heat stress. Journal of Agronomy and Crop Science 200(2): 156-162. https://doi.org/10.1111/jac.12050
  64. Kuske, C.R., Yeager, C.M., Johnson, S., Ticknopr, L.O. and Belnap, J. 2012. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. The ISME Journal 6(4): 886-897. https://doi.org/10.1038/ismej.2011.153
  65. Lal, R. 1993. Tillage effects on soil degradation, soil resilience, soil quality and sustainability. Soil and Tillage Research 27(1-4): 1-8. https://doi.org/10.1016/0167-1987(93)90059-X
  66. Lal, R. 1997. Degradation and resilience of soils. Philosophical Transactions of The Royal Society of London. Series B: Biological Sciences. 352(1356): 997-1010. https://doi.org/10.1098/rstb.1997.0078
  67. Lal, R. 2015. Sequestering carbon and increasing productivity by conservation agriculture. Journal of Soil and Water Conservation 70(3): 55-62. https://doi.org/10.2489/jswc.70.3.55A
  68. Lal, R. 2016. Soil health and carbon management. Food and Energy security 5(4): 212-222. https://doi.org/10.1002/fes3.96
  69. Larney, F.J., Li, L., Janzen, H.H., Angers, D.A. and Olson, B.M. 2016. Soil quality attributes, soil resilience and legacy effects following topsoil removal and one-time amendments. Canadian Journal of Soil Science 96(2): 177-190. https://doi.org/10.1139/cjss-2015-0089
  70. Lewis, T., Reid, N., Clarke, P.J. and Whalley, R.D.B. 2010. Resilience of a high conservation-value, semi-arid grassland on fertile clay soils to burning, mowing and ploughing. Autral Ecology 35(4): 464-481.
  71. Liang, C., Zhu, X., Fu, S., Mendez, A., Gascό, G. and Paz-Ferreiro, J. 2014. Biochar alters the resistance and resilience to drought in a tropical soil. Environmental Research Letters 9(6): 1-6.
  72. Loreau, M., Sapijanskas, J., Isabell, F. and Hector, A. 2012. Niche and fitness differences relate the maintenance of diversity to ecosystem function: comment. Ecology 93(6): 1482-1487. https://doi.org/10.1890/11-0792.1
  73. Lorenz, K. and Lal, R. 2015. Managing soil carbon stocks to enhance the resilience of urban ecosystems. Carbon Management 6(1-2): 35-50. https://doi.org/10.1080/17583004.2015.1071182
  74. Maestas, J.D., Campbell, S.B., Chambers, J.C., Pellant, M. and Miller, R.F. 2016. Tapping soil survey information for rapid assessment of Sagebrush ecosystems resilience and resistance. Rangelands 38(3): 120-128. https://doi.org/10.1016/j.rala.2016.02.002
  75. Mandal, U.K., Sharma, K.L., Venkanna, K., Pushpanjali, Adake, R.V., Masane, R.N., Prasad, J.V.N.S., Venkatesh, G. and Rao, Ch.S. 2017. Sustaining soil quality, resilience and critical carbon level under different cropping systems in semi-arid tropical alfisol soils. Current Science 112(9): 1882-1895. https://doi.org/10.18520/cs/v112/i09/1882-1895
  76. Marafa, L.M. 2002. Effects and resilience of some soil chemical properties as a result of fire in an urban fringe. Geography 87(4): 336-344
  77. Martinez-Garcia, L.B., De Deyn, G.B., Pugnaire, F.I., Kothamasi, D. and van der Heijden, M.G.A. 2017. Symbiotic soil fungi enhance ecosystem resilience to climate change. Global Change Biology 23(12): 5228-5236. https://doi.org/10.1111/gcb.13785
  78. Martinez-Pascual, E., Grotenhuis, T., Solana, A.M. and Vinas, M. 2015. Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. Journal of Hazardous Materials 300(30): 135-143. https://doi.org/10.1016/j.jhazmat.2015.06.061
  79. McGovern, S.T., Evans, C.D., Dennis, P., Walmsley, C.A., Turner, A. and McDonald, M.A. 2013. Resilience of upland soils to long term environmental changes. Geoderma 197-198: 36-42. https://doi.org/10.1016/j.geoderma.2012.12.018
  80. Meola, M., Lazzaro, A. and Zeuyer, J. 2014. Diversity, resistance and resilience of the bacterial communities at tow alpine glacier forefileds after a reciprocal soil transplantation. Environmental Microbiology 16(6): 1918-1934. https://doi.org/10.1111/1462-2920.12435
  81. Mertens, J., Ruyters, S., Springael, D. and Smolders, E. 2007. Resistance and resilience of zinc tolerant nitrifying communities is unaffected in long-term zinc contaminated soils. Soil Biology and Biochemistry 39(7): 1828-1831. https://doi.org/10.1016/j.soilbio.2007.01.032
  82. Miethling, R. and Tebbe, C.C. 2004. Resilience of a soil-established, genetically modified Sinorhizobium meliloti inoculant to soil management practices. Applied Soil Ecology 25(2): 161-167. https://doi.org/10.1016/j.apsoil.2003.08.003
  83. Mills, R.T.E., Gavazov, K.S., Spiegelberger, T., Johnson, D. and Buttler, A. 2014. Diminished soil functions occur under simulated climate change in a sup-alphine pasture, but heterotrophic temperature sensitivity indicates microbial resilience. Science of Total Environment 473-474: 465-472. https://doi.org/10.1016/j.scitotenv.2013.12.071
  84. Mocali, S., Landi, S., Curto, G., Dallavalle, E., Infantino, A., Colzi, C., d'Errico, G., D'Avino, L. and Lazzeri, L. 2015. Resilience of soil microbial and nematode communities after biofumugant treatment with defatted seed meals. Industrial Crops and Products 75(30): 79-90. https://doi.org/10.1016/j.indcrop.2015.04.031
  85. Mora, J.L. and Lazaro, R. 2013. Evidence of a threshold in soil erodibility generating differences in vegetation development and resilience between two semiarid grasslands. Journal of Arid Environments 89: 57-66. https://doi.org/10.1016/j.jaridenv.2012.10.005
  86. Munkholm, L.J., Schjonning, P., Debosz, K., Jensen, H.E. and Christensen, B.T. 2002. Aggregate strength and mechanical behaviour of a sandy loam soil under long-term fertilization treatments. Eurasian Journal of Soil Science 53(1): 129-137. https://doi.org/10.1046/j.1365-2389.2002.00424.x
  87. Mworia, J.K., Mnene, W.N., Musembi, D.K. and Reid, R.S. 1997. Resilience of soils and vegetation subjected to different grazing intensities in a semi-arid rangeland of Kenya. African Journal of Range and Forage Science 14(1): 26-31. https://doi.org/10.1080/10220119.1997.9647915
  88. Nearing, M.A., Pruski, F.F. and O'Neal, M.R. 2004. Expected climate change impacts on soil erosion rates: a review. Journal of Soil and Water Conservation 59(1): 43-50.
  89. Neilsen, G.H. and Yorston, J. 1991. Soil disinfection and monoammonium phosphate fertilization increase precocity of apples on replant problem soils. American Society for Horticultural Science 116(4): 651-654. https://doi.org/10.21273/JASHS.116.4.651
  90. Ng, E.L., Patti, A.F., Rose, M.T., Schefe, C.R., Smernik, R.J. and Cavagnaro, T.R. 2015. Do organic inputs alter resistance and resilience of soil microbial community to drying? Soil Biology and Biochemistry 81: 58-66. https://doi.org/10.1016/j.soilbio.2014.10.028
  91. OJERI. 2015. Resilience Thinking, Geobook, Seoul, Korea. (in Korean)
  92. Olson, K.R., Al-Kaisi, M., Lal, R. and Morton, L.W. 2017. Soil ecosystem services and intensified cropping systems. Journal of Soil and Water Conservation 72(3): 64-69. https://doi.org/10.2489/jswc.72.3.64A
  93. Orwin, K.H. and Wardle, D.A. 2005. Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance. Plant and Soil 278: 205-221. https://doi.org/10.1007/s11104-005-8424-1
  94. Overby, S.T., Owen, S.M., Hart, S.C., Neary, D.G. and Johnson, N.C. 2015. Soil microbial community resilience with tree thinning in a 40-year-old experimental ponderosa pine forest. Applied Soil Ecology 93: 1-10. https://doi.org/10.1016/j.apsoil.2015.03.012
  95. Peters, R. 1991. Consequences of global warming for biological diversity, Routledge, Chapman and Hall, London, UK.
  96. Pimm, S.L. 1984. The complexity and stability of ecosystems, Nature 307: 321-326. https://doi.org/10.1038/307321a0
  97. Preece, C. and Penuelas, J. 2016. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant and Soil 409(1-2): 1-17. https://doi.org/10.1007/s11104-016-3090-z
  98. Richardson, G.E. 2002. The metatheory of resilience and resiliency. Journal of Clinical Psychology 25: 307-321. https://doi.org/10.1002/jclp.10020
  99. Rivest, D., Lorente, M., Olivier, A. and Messier, C. 2013. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions. Science of Total Environment 463-464: 51-60. https://doi.org/10.1016/j.scitotenv.2013.05.071
  100. Rivest, D., Paquette, A., Shipley, B., Reich, P.B. and Messier, C. 2015. Tree communities rapidly alter soil microbial resistance and resilience to drought. Functional Ecology 29: 570-578. https://doi.org/10.1111/1365-2435.12364
  101. Romero, C.M., Abril, A., Noe, L. and Rampoldi, E.A. 2014. Resilience of humification process to evaluate soil recovery in a semiarid agroecosystem of central Argentina. Spanish Journal of Soil Science 4(3): 211-224.
  102. Rozanov, B.G. 1994. Stressed soil systems and soil resilience in drylands. In, Proceeding of 15th International Congress of Soil Science, Acapulco, Mexico. pp. 238-245.
  103. Rykiel, E. Jr. 1985. Towards a definition of ecological disturbance. Australian Journal of Ecology 10: 361-365. https://doi.org/10.1111/j.1442-9993.1985.tb00897.x
  104. Schaeffer, A., Amelung, W., Hollert, H., Kaestner, M., Kandeler, E., Kruse, J., Miltner, A., Ottermanns, R., Pagel, H., Peth, S., Poll, C., Rambold, G., Schloter, M., Schulz, S., Streck, T. and Ro$\ss$-Nikoll, M. 2016. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Science of Total Environment 568(15): 1076-1085. https://doi.org/10.1016/j.scitotenv.2016.06.161
  105. Scheu, S. and Schulz, E. 1996. Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodiversity and Conservation 5: 235-250. https://doi.org/10.1007/BF00055833
  106. Scott, K., Setterfield, S., Douglas, M. and Andersen, A. 2010. Soil seed bank confer resilience to savanna grasslayer plants during seasonal disturbance. Acta Oecologica 36(2): 202-210. https://doi.org/10.1016/j.actao.2009.12.007
  107. Seybold, C.A., Herrick, J.E. and Brejda, J.J. 1999. Soil resilience: a fundamental component of soil quality. Soil Science 164(4): 224-234. https://doi.org/10.1097/00010694-199904000-00002
  108. Stock, B.J., Fosberg, M.A., Lynham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Jin, J.-Z., Lawrence, K., Hartley, G.R., Mason, J.A. and McKenney, D.W. 1998. Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change 38(1): 1-13. https://doi.org/10.1023/A:1005306001055
  109. Szabolcs, I. 1994. The concept of soil resilience. In, Greenland, D.J. and Szabolcs, I. (eds.), Soil resilience and sustainable land use. CAB International, Wallingford, UK. pp. 33-39.
  110. Timmermann, P. 1981. Vulnerability, resilience and the collapse of society. No. 1 in Environmental Monograph, Institute for Environmental Studies, University of Toronto, Toronto, Canada.
  111. Tobias, S., Hennes, M., Meier, E. and Schulin, R. 2001. Estimating soil resilience to compaction by measuring changes in surface and subsurface levels. Soil Use and Management 17(4): 229-234. https://doi.org/10.1079/SUM200184
  112. Trenberth, K.E., Branstator, G.W. and Arkin, P.A. 1988. Origins of the 1988 North American drought. Science 242(4886): 1640-1645. https://doi.org/10.1126/science.242.4886.1640
  113. Ulrich, B. 1987. Stability, elasticity, and resilience of terrestrial ecosystems with respect to matter balance. In, Schulze, E.D. and Zwolfer, H. (eds.), Potentials and limitations of ecosystem analysis, Springer, Berlin, Germany. pp. 11-49.
  114. Vasil'evskaya, V.D., Grigor'ev, V.Y. and Pogozheva, E.A. 2006. Relationships between soil and vegetation characteristics of tundra ecosystems and their use to assess soil resilience, degradation, and rehabilitation potentials. Eurasian Soil Science. 39: 314-323. https://doi.org/10.1134/S1064229306030112
  115. Verhulst, N., Carrillo-Garcia, A., Moeller, C., Trethowan, R., Sayre, K.D. and Govaerts, B. 2011. Conservation agriculture for wheat-based cropping systems under gravity irrigation: increasing resilience through improved soil quality. Plant and Soil 240(1-2): 467-479.
  116. Wada, S. and Toyota, K. 2007. Repeated applications of farmyard manure enhance resistance and resilience of soil biological functions against soil disinfection. Biology and Fertility of Soil 43(3): 349-356. https://doi.org/10.1007/s00374-006-0116-3
  117. Wang, L., D'Odorico, P., Manzoni, S., Porporato, A. and Macko, S. 2009. Soil carbon and nitrogen dynamics in southern African savannas: the effect of vegetationinduced patch-scale heterogeneities and large scale rainfall gradients. Climatic Change 94(1): 63-76. https://doi.org/10.1007/s10584-009-9548-8
  118. Wang, X., Sun, L., Wang, Z., Liu, C. and Zhang, Y. 2014. An analysis of the resilience capacity of soils in North China: a study on land subsidence treatment. Bulletin of Engineering Geology and the Environment 73(3): 723-731. https://doi.org/10.1007/s10064-013-0561-9
  119. Wertz, S., Degrange, V., Prosser, J.I., Poly, F., Commeaux, C., Guillaumaud, N. and Le Roux, X. 2007. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environmental Microbiology 9(9): 2211-2219. https://doi.org/10.1111/j.1462-2920.2007.01335.x
  120. White, P.S. and Pickett, S.T.A. 1985. Natural disturbance and path dynamics: An introduction. Academic Press, Inc., Orlando, FL, USA.
  121. Zhang, B., Horn, R. and Hallett, P.D. 2005. Mechanical resilience of degraded soil amended with organic matter. Soil Science Society of America Journal 69(3): 864-871. https://doi.org/10.2136/sssaj2003.0256
  122. Zhang, B., Wang, H., Yao, S. and Bi, L. 2013. Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana. Soil Biology and Biochemistry 57: 556-567. https://doi.org/10.1016/j.soilbio.2012.07.024
  123. Zhou, X., Fornara, D., Ikenage, M., Akagi, I., Zhang, R. and Jia, Z. 2016. The resilience of microbial community under drying and rewetting cycles of three forest soils. Frontiers in Microbiology 7: 1-12.