DOI QR코드

DOI QR Code

Exploring How a High School Science Teacher's Understanding and Facilitation of Scientific Modeling Shifted through Participation in a Professional Learning Community

교사학습공동체에 참여한 한 고등학교 교사의 과학적 모델링에 대한 이해 및 수업 실행 변화 탐색 -프레임 분석을 중심으로-

  • Received : 2019.11.26
  • Accepted : 2020.02.24
  • Published : 2020.02.29

Abstract

The purpose of this study is to explore how a high school science teacher (Teacher E) shifted her understanding and facilitation of scientific modeling through participation in a professional learning community (PLC) for over a year. Based on socially situated theory of learning, I focused on examining Teacher E's frames about scientific modeling from her social interactions. Teacher E participated in her school-based PLC over a year and collaborated with other science teachers, coaches, and researchers to improve science instruction. I qualitatively explored her participation in 6 full-day professional learning opportunities-studios-where the PLC members collectively planned, implemented, and debriefed modeling-based lessons. Especially, I focused on two Studios (Studio 2, 6) where Teacher E became the host teacher and implemented the lessons. I also examined her classroom teaching in those Studios. To understand how the PLC inquiry affected the shifts observed in Teacher E's understanding and practice, I explored how the inquiry evolved over the 6 Studios. Findings suggest that in Studio 2, Teacher E viewed students' role in scientific modeling as to fill out the worksheet with "correct" answers. Meanwhile, in Studio 6, she focused on helping students collaborate to construct explanatory models of phenomena using evidence. The PLC inquiry, focused on supporting students' construction of evidence-based explanations and collaboration in scientific modeling, seemed to promote the shifts observed in Teacher E's understanding and facilitation of scientific modeling. These findings can inform educational researchers and practitioners who aim to promote teachers' professional learning to support students' epistemic practices.

본 연구의 목적은 한 고등학교 과학 교사(E 교사)가 약 1년 3개월간 교사공동체 탐구에 참여하며 어떻게 과학적 모델링에 관한 이해와 실행을 변화시켜나갔는지를 탐색하는 것이었다. 상황 학습 관점을 기반으로 본 연구에서는 E 교사의 사회적 상호작용들로부터 모델링에 관한 그녀의 프레임들을 탐색하였다. E 교사는 1년 3개월간 총 6회의 "스튜디오"라는 교사 연수에 참여해 같은 학교의 과학 교사들과 연구자들, 코치들과 협력하였다. 매 스튜디오에서 참여자들은 함께 모델링 기반 수업을 계획하고, 실행하고, 그에 관해 반성하였다. 본 연구에서는 먼저 E 교사가 수업을 진행한 2회차, 6회차 스튜디오에 초점을 맞추어, E 교사의 교사공동체 및 교실 상호작용으로부터 드러난 모델링에 관한 그녀의 프레임들을 질적으로 탐색하고, 그로부터 E 교사의 이해와 실행에 변화가 있었는지 탐색하였다. 다음으로, 교사공동체 탐구가 E 교사의 이해와 실행 변화에 어떻게 영향을 미쳤는지 탐색하기 위하여, 1-6회차 스튜디오에서 진행된 교사공동체 탐구가 질적으로 분석되었다. 연구 결과, 2회차 스튜디오에서 E 교사는 과학적 모델링을 학생들이 활동지에 정답을 채워 넣는 활동으로 보고 있었다. 반면 6회차 스튜디오에서 E 교사가 드러낸 과학적 모델링에 관한 프레임들은 그녀가 모델링을 학생들이 협력을 통해 증거를 사용하여 자연현상에 관한 설명을 구성하는 과정으로 보고 있었음을 보여주었다. E 교사가 속한 교사공동체는 모델링 기반 교수를 발전시키고자 하는 목표를 바탕으로, 매 스튜디오에서 학생들의 모델링을 돕고, 학생들의 설명과 추론을 분석하였다. 또한 그들은 여러 스튜디오들에 걸쳐 탐구 초점들과 교수 실행들을 구체화시키고 발전시켜나갔다. 이러한 공동체 탐구의 초점들은 E 교사의 과학적 모델링에 관한 이해와 실행 변화에 반영되었다. 본 연구의 결과는 교사공동체 탐구나 교사 전문성 발달을 지원하고자 하는 연구자, 실행가들에게 유용한 정보를 제공할 수 있다.

Keywords

References

  1. Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94. https://doi.org/10.1002/tea.20446
  2. Bryk, A. S., Gomez, L. M., Grunow, A., & LeMahieu, P. G. (2015). Learning to improve: How America's schools can get better at getting better. Cambridge, MA: Harvard Education Press.
  3. Clement, J. J., & Rea-Ramirez, M. A. (Eds.) (2008). Model-based learning and instruction in science. New York, NY: Springer.
  4. Coburn, C. E. (2006). Framing the problem of reading instruction: Using frame analysis to uncover the microprocesses of policy implementation. American Educational Research Journal, 43(3), 343-349. https://doi.org/10.3102/00028312043003343
  5. Crawford, B. A., & Cullin, M. J. (2004). Supporting prospective teachers' conceptions of modelling in science. International Journal of Science Education, 26(11), 1379-1401. https://doi.org/10.1080/09500690410001673775
  6. Do, H., Park, J., & Yoo, J. (2016). An analysis of teacher's scaffolding for promoting social construction of scientific models in middle school science classes. Journal of the Korean Association for Science Education, 36(4), 643-655. https://doi.org/10.14697/jkase.2016.36.4.0643
  7. Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268-291. https://doi.org/10.3102/0091732X07309371
  8. Goffman, E. (1974). Frame analysis: An essay on the organization of experience. Cambridge, MA: Harvard University Press.
  9. Grossman, P., Wineburg, S., & Woolworth, S. (2001). Toward a theory of teacher community. Teachers College Record, 103(6), 942-1012. https://doi.org/10.1111/0161-4681.00140
  10. Ha, H., Lee, Y., & Kim, H. B. (2018). Exploring the teachers' responsive teaching practice and epistemological framing in whole class discussion after small group argumentation activity. Journal of the Korean Association for Science Education, 38(1), 11-26. https://doi.org/10.14697/jkase.2018.38.1.11
  11. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89-120). Greenwich, CT: Information Age Publishing.
  12. Hargreaves, A., & Fullan, M. (2012). Professional Capital: Transforming teaching in every school. New York, NY: Teachers College Press.
  13. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
  14. Horn, I. S. (2010). Teaching replays, teaching rehearsals, and re-visions of practice: Learning from colleagues in a mathematics teacher community. Teachers College Record, 112(1), 225-259.
  15. Hutchison, P., & Hammer, D. (2010). Attending to student epistemological framing in a science classroom. Science Education, 94(3), 506-524. https://doi.org/10.1002/sce.20373
  16. Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  17. Kim, Y., & Choi, A. (2019). Understanding of scientific inquiry developed by beginning science teachers in professional learning community. Journal of the Korean Association for Science Education, 39(2), 221-232. https://doi.org/10.14697/JKASE.2019.39.2.221
  18. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.
  19. Lee, S., Kim, C. J., Choe, S. U., Yoo, J., Park, H., Kang, E., & Kim, H. B. (2012). Exploring the patterns of group model development about blood flow in the heart and reasoning process by small group interaction. Journal of the Korean Association for Science Education, 32(5), 805-822. https://doi.org/10.14697/jkase.2012.32.5.805
  20. Lehrer, R., & Schauble, L. (2006). Cultivating model-based reasoning in science education. Cambridge, UK: Cambridge University Press.
  21. Lewis, C., Perry, R., & Hurd, J. (2004). A deeper look at lesson study. Educational Leadership, 61(5), 18.
  22. Louca, L. T., Zacharia, Z. C., & Constantinou, C. P. (2011). In Quest of productive modeling‐based learning discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919-951. https://doi.org/10.1002/tea.20435
  23. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  24. Nelson, M. M., & Davis, E. A. (2012). Preservice elementary teachers' evaluations of elementary students' scientific models: An aspect of pedagogical content knowledge for scientific modeling. International Journal of Science Education, 34(12), 1931-1959. https://doi.org/10.1080/09500693.2011.594103
  25. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  26. Passmore, C., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. https://doi.org/10.1080/09500693.2011.577842
  27. Schwarz, C. V. (2009). Developing preservice elementary teachers' knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720-744. https://doi.org/10.1002/sce.20324
  28. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., ... Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  29. Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1
  30. Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23. https://doi.org/10.17763/haer.57.1.j463w79r56455411
  31. Tannen, D. (1993). Framing in discourse. Oxford, England: Oxford University Press.
  32. Thompson, J., Hagenah, S., Kang, H., Stroupe, D., Braaten, M., Colley, C., & Windschitl, M. (2016). Rigor and responsiveness in classroom activity. Teachers College Record, 118(5), 1-58.
  33. Van Driel, J. H., & Verloop, N. (1999). Teachers' knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141-1153. https://doi.org/10.1080/095006999290110
  34. Windschitl, M., & Thompson, J. (2006). Transcending simple forms of school science investigation: The impact of preservice instruction on teachers' understandings of model-based inquiry. American Educational Research Journal, 43(4), 783-835. https://doi.org/10.3102/00028312043004783
  35. Windschitl, M., Thompson, J., & Braaten, M. (2018). Ambitious science teaching. Cambridge, MA: Harvard Education Press.
  36. Yin, R. K. (2014). Case study research: Design and methods (5th ed.). Thousand Oaks, CA: Sage.