DOI QR코드

DOI QR Code

A study on the Design of Output 380V DC-DC Converter for LVDC Distribution

LVDC 배전을 위한 출력 380V DC-DC 컨버터 설계에 관한 연구

  • Received : 2020.03.06
  • Accepted : 2020.03.25
  • Published : 2020.03.31

Abstract

In this study, the output 380V direct current DC-DC converter for low-voltage direct current(LVDC) distribution was designed in three types, and the voltage and current characteristics of the three types of DC-DC converter were compared and analyzed through simulation. When the converter was configured using a parallel structure with the power metal-oxide semiconductor field-effect transistor and two current suppression insulated-gate bipolar transistors(IGBTs), the time when the output voltage was stabilized at DC 380V was relatively short with 9ms and the range of output current changes was also between 44.8A and 50.2A, indicating that the width of change was much smaller and the effect of current suppression was greater compared to when IGBT was not applied(68~83A). These results suggest that the proposed DC-DC converter for LVDC distribution is likely to be applied to smart grid construction.

본 연구에서는 LVDC 배전용 출력 380V DC-DC 컨버터를 3가지 유형으로 설계하였고, 시뮬레이션을 통해 3가지 유형의 DC-DC 컨버터의 전압과 전류 특성을 비교 분석하였다. 전력용 MOSFET와 2개의 전류억제용 IGBT를 병렬구조로 적용하여 컨버터를 구성한 경우, 출력 전압이 DC 380V로 안정화 된 시간이 9ms로 비교적 짧았으며, 출력 측 전류 변화 폭도 44.8~50.2A로 IGBT를 적용하지 않았을 경우(68~83A) 보다 훨씬 변화 폭도 작고 전류억제 효과도 더 뛰어남을 알 수 있었다. 이러한 결과는 제안한 LVDC 배전용 DC-DC 컨버터가 스마트 그리드 구축에 적용 가능성이 있음을 시사한다.

Keywords

References

  1. H. S. Kim, "Smart grid domestic and foreign technology trends: innovative consumers," TTA Journal., No.129, pp.56-60 2010.
  2. Small and Medium Business Administration, "에너지 수요 관리, LVDC 배전 기술," 2017-2019 Energy demand management, LVDC distribution technology, pp.3-33, 2016.
  3. E. J. Lee, S. M. Kim and K. B. Lee, "A Selective Voltage Balancing Scheme of a Modular Multilevel DC-DC Converter for Solid-State Transformers," j.inst.Korean.electr.electron.eng, Vol.23, No.2, pp. 652-658, 2019. DOI: 10.7471/ikeee.2019.23.2.652
  4. B. W. Ko "The grid-connected bidirectional PCS technology of the ESS," j.inst.Korean.electr. electron.eng, Vol.23, No.4, pp.1280-1287, 2019. DOI: 10.7471/ikeee.2019.23.4.1280
  5. L. H. Hwang, "A Study on the Characteristics of PCS Using a Solar Cells Generation of Optimal Integrated," j.inst.Korean.electr.electron.eng, Vol.23, No.3, pp.1003-1014, 2019. DOI: 10.7471/ikeee.2019.23.3.1003
  6. Y. W. Kim, M. H. Kwon, S. Y. Park, M. K. Kim, D. K. Yang, S. W. Choi, and S. J. Oh, "Development of 80kW Bi-directional Hybrid-SiC Boost-Buck Converter using Droop Control in DC Nano-grid," The Transactions of the Korean Institute of Power Electronics, Vol.22, No.4, pp. 360-368, 2019. DOI: 10.6113/TKPE.2017.22.4.360
  7. Y. J. Jin and K. H. Joh, "ZVS-PWM Boost Converter using Auxiliary Circuit," j.inst.electron. infor.eng, Vol.41, No.1, pp.45-49, 2004.
  8. G. Y. Jeong, "Non-Isolation, High-Efficiency and High-Voltage-Output DC-DC Converter using the Self-Driven Synchronous Switch," j.inst.Korean. electr.electron.eng, Vol.23, No.3, pp.962-970, 2019. DOI: 10.7471/ikeee.2019.23.3.962