DOI QR코드

DOI QR Code

형태특징과 지역특징 융합기법을 활용한 열영상 기반의 차량 분류 방법

A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features

  • Yang, Dong Won (Ground Technology Research Institute(GTRI), Agency for Defense Development(ADD))
  • 투고 : 2020.02.27
  • 심사 : 2020.03.24
  • 발행 : 2020.03.31

초록

열 영상은 온도에 따라 방출하는 에너지의 차이를 나타낸 영상이다. 주야간 사용이 가능하기 때문에 군사적인 용도로 많이 활용되고 있으나, 열 영상은 물체의 경계가 불명확하고 흐릿하게 표현되는 경우가 많으며 화염 등의 열기로 인해 경계부분이 변질되는 단점이 있다. 따라서, 열 영상을 이용하여 표적의 종류를 분류할 때 정확하게 분할된 경계선을 이용할 경우 효과적으로 분류 할 수 있지만, 물체의 경계가 잘못 추출되는 경우 분류의 정확도가 크게 감소한다. 본 논문에서는 이러한 단점을 극복하기 위해서 표적 영상의 분할 신뢰도에 따라 형태특징과 지역특징의 분류결과를 융합하는 계층적 분류기법을 제안하였으며, 연속 영상 기반으로 분류 결과를 갱신하는 기법을 새롭게 제안하여 차량 표적 분류 정확도를 개선하였다. 제안하는 방법은 실제 군용 표적 4종(전차, 장갑차, 상용차, 군용트럭)이 있는 다양한 자세의 열 영상 20,000장 이상을 이용하여 성능을 검증하였으며, 우수한 성능의 기존 방법 대비 정확도 개선에 효과가 있음을 확인하였다.

A thermal imaging sensor receives the radiating energy from the target and the background, so it has been widely used for detection, tracking, and classification of targets at night for military purpose. In recognizing the target automatically using thermal images, if the correct edges of object are used then it can generate the classification results with high accuracy. However since the thermal images have lower spatial resolution and more blurred edges than color images, the accuracy of the classification using thermal images can be decreased. In this paper, to overcome this problem, a new hierarchical classifier using both shape and local features based on the segmentation reliabilities, and the class/pose updating method for vehicle classification are proposed. The proposed classification method was validated using thermal video sequences of more than 20,000 images which include four types of military vehicles - main battle tank, armored personnel carrier, military truck, and estate car. The experiment results showed that the proposed method outperformed the state-of-the-arts methods in classification accuracy.

키워드

참고문헌

  1. N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, "A Novel Video Dataset for Change Detection Benchmarking," IEEE Trans. on Image Process., Nol.23, No.11, pp.4663-4679, 2014. DOI: 10.1109/TIP.2014.2346013
  2. Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, "Comparative study of background subtraction algorithms," J. Electron. Imag., Vol.19, No.3. 2010. DOI: 10.1117/1.3456695
  3. M. S. Allili, N. Bouguila, and D. Ziou, "Finite general Gaussian mixture modeling and application to image and video foreground segmentation," J. Electron. Imag., Vol.17, No.1, 2008. DOI: 10.1109/CRV.2007.33
  4. O. Barnich, and M. V. Droogenbroeck, "ViBe: A Universal Background Subtraction Algorithm for Video Sequences," IEEE Trans. Image Process., Vol.20, No.6, pp.1709-1724, 2011. DOI: 10.1109/TIP.2010.2101613
  5. M. V. Droogenbroeck and O. Paquot, "Background Subtraction: Experiments and Improvements for ViBe," in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), pp.32-37, 2012. DOI: 10.1109/CVPRW.2012.6238924
  6. D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., Vol.60, pp.91-110, 2004. DOI: 10.1023/B:VISI.0000029664.99615.94
  7. H. Bay, T. Tuytelaars, and L. V. Gool, "SURF: Speeded Up Robust Features," in Proc. Eur. Conf. Comput. Vis., pp.404-417, 2006. DOI: 10.1007/11744023_32
  8. N. Dalal, and B. Triggs, "Histograms of Oriented Gradients for Human Detection," in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., vol.1, pp.886-893, 2005. DOI: 10.1109/CVPR.2005.177
  9. A. Bosch, A. Zisserman, and X. Munoz, "Representing shape with a spatial pyramid kernel," in Proc. of the 6th ACM Int. Conf. on Image and Video Retrieval, pp.401-408, 2007. DOI: 10.1145/1282280.1282340
  10. P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, "Object Detection with Discriminatively Trained Part-Based Models," IEEE Trans. Pattern Anal. Mach. Intell., Vol.32, No.9, pp.1627-1645, 2010. DOI: 10.1109/TPAMI.2009.167
  11. A. Oliva, and A. Torralba, "Building the gist of a scene: the role of global image features in recognition," Progress in Brain Research, vol.155, pp.23-36, 2006. DOI: 10.1.1.304.2750 https://doi.org/10.1016/S0079-6123(06)55002-2
  12. H. Riemenschneider, M. Donoser, and H. Bischof, "Using Partial Edge Contour Matches for Efficient Object Category Localization," in Proc. Eur. Conf. Comput. Vis., pp.29-42, 2010. DOI: 10.1007/978-3-642-15555-0_3
  13. Y. Mingqiang, K. Kidiyo, and R. Joseph, "A survey of shape feature extraction techniques," Pattern Recognit., pp.43-90, 2008. DOI: 10.5772/6237
  14. S. Belongie, J. Malik, and J. Puzicha, "Shape Matching and Object Recognition Using Shape Contexts," IEEE Trans. Pattern Anal. Mach. Intell., Vol.24, No.24, pp.509-522, 2002. DOI: 10.1109/34.993558
  15. D. W. Yang, H. W. Park, "A New Shape Feature for Vehicle Classification in Thermal Video Sequences," IEEE Trans. Circuits Syst. Video Technol., Vol.26, No.7, pp.1363-1375, 2016. DOI: 10.1109/TCSVT.2015.2452780
  16. C. C. Chang, and C. J. Lin, "LIBSVM: A Library for Support Vector Machines," http://www.csie.ntu.edu.tw/-cjlin/papers/libsvm.pdf, 2012.
  17. B. Waske, and J. A. Benediktsson, "Fusion of Support Vector Machines for Classification of Multisensor Data," IEEE Trans. Geosci. Remote Sens., Vol.45, No.12, pp.3858-3866, 2007. DOI: 10.1109/TGRS.2007.898446
  18. L. Breiman, "Random Forests," Machine Learning, Vol.45, pp.5-32, 2001. DOI: 10.1023/A:1010933404324
  19. B. C. Ko, D-Y. Kim, J-H. Jung, and J-Y. Nam, "Three-level cascade of random forests for rapid human detection," Optical Engineering, Vol.52, No.2, pp.027204(1-9), 2013. DOI: 10.1117/1.OE.52.2.027204
  20. D. W. Yang, Y. Lee, D. Kwak, "A Study on Vehicle Target Classification Method Using Both Shape and Local Features with Segmentation Reliability," Journal of KIMST (Korea Institute of Military Science and Technology), Vol.20, No.1, pp.40-47, 2017. DOI: 10.9766/KIMST.2017.20.1.040
  21. M. Hodlmoser, B. Micusik, M.-Y. Liu, M. Pollefeys, M. Kampel, "Classification and Pose Estimation of Vehicles in Videos by 3D Modeling within Discrete-Continuous Optimization," 3DIMPVT (3D Imaging, Modeling, Processing, Visualization and Transmission), 2012. DOI: 10.1109/3DIMPVT.2012.23