DOI QR코드

DOI QR Code

The Relationship Between Temperature and Spring Phytophenological Index

기온과 봄 식물계절지수와의 관계

  • Received : 2019.09.12
  • Accepted : 2020.03.02
  • Published : 2020.04.01

Abstract

In order to find out the relationship between spring phytophenological index and temperature index for the past nine years (2010~2018), this study identified the relationship between temperature changes and trends in spring phytophenological index of sprouting, flowering and leaf unfolding of Pinus densiflora Siebold & Zucc., Larix kaempferi (Lamb.) Carrière, Quercus mongolica Fisch. ex Ledeb., Rhododendron mucronulatum Turcz., Lindera obtusiloba Blume and Acer pseudosieboldianum (Pax) Kom. in Daegu Arboretum, Palgong mt., Juwang mt. and Gaya mt. The change in temperature was caused by an increase in the monthly average temperature between March and April compared to February for nine years, and the average temperature of Daegu Arboretum and Palgong mt. were higher by region. The sprouting, flowering and leaf unfolding were the fastest of the Lindera obtusiloba and the slowest of the Pinus densiflora for each species, and the fastest plant season in Daegu arboretum came. SPI (Spring Phytophenological Index) tends to advance by -1.267~-6.151/9 years, with the largest Pinus densiflora (-6.151/9 years), with the lowest rate of change for Rhododendron mucronulatum (-1.267 days/9 years). Species which shows significant values in sprouting, flowering and leaf unfolding is Rhododendron mucronulatum and Pinus densiflora, which correlate with the mean temperature of January to March. As a result of checking the time series change of SPI, the change rate in the four regions was all negative and the phenolocal index was all accelerating. Among them, the rate of change was greater in inland areas such as Daegu arboretum, Palgong Mt. and Gaya mt. and the rate of change was slightly lower in the case of Juwang mt., which is somewhat distant.

본 연구는 봄 식물계절지수와 기온지표와의 관계를 알아보기 위해 지난 9년간(2010년-2018년) 대구수목원, 팔공산, 주왕산, 가야산에 공통적으로 생육하는 소나무, 일본잎갈나무, 신갈나무, 진달래, 생강나무, 당단풍나무 6종을 대상으로 발아, 개화, 개엽의 봄 식물계절 시기의 변화 경향과 기온간의 관계를 파악하였다. 기온의 변화는 9년동안2월 보다 3~4월의 월평균 기온이 증가하였으며, 지역별로 수목원과 팔공산의 평균기온이 높았다. 발아, 개화, 개엽은 수종별로 생강나무가 가장 빠르며 소나무가 가장 느렸고, 지역별로 수목원에서 가장 빨리 식물계절시기가 도래하였다. 봄 식물계절시기는 -1.267~-6.151일/9년 정도 앞당겨지고 있는 경향을 보이는데 소나무(-6.151일/9년)가 가장 크며, 진달래(-1.267일/9년)의 변화율이 가장 낮았다. 발아, 개화, 개엽에서 모두 유의한 값을 보이는 수종은 진달래와 소나무로서 이들은 1월~3월 평균기온과 상관관계를 보였다. 봄 식물계절지수(SPI)의 시계열 변화를 확인한 결과 4개 지역의 변화율이 모두 음의 값으로 식물계절 시기가 모두 빨라지고 있었다. 그 중 수목원, 팔공산 및 가야산과 같은 내륙지역일수록 변화율이 컸으며, 다소 거리가 떨어진 주왕산의 경우 변화율이 조금 낮게 나타났다.

Keywords

References

  1. Badeck, F.W., A. Bondeau, K. Böttcher, D. Doktor, W. Lucht, J. Schber and S. Sitch. 2004. Responses of spring phenology to climate change. New Phytol. 162(2):295-309. https://doi.org/10.1111/j.1469-8137.2004.01059.x
  2. Cannell, M.G.R. and R.I. Smith. 1983. Thermal time, chill days and prediction of budburst in picea sitchensis. J. Appl. Ecol. 20(3):951-963. https://doi.org/10.2307/2403139
  3. Chmielewski, F.M. and T. Roter. 2001. Response of tree phenology to climate change across Europe. Agric. Forest Meteorol. 108(2):101-112. https://doi.org/10.1016/S0168-1923(01)00233-7
  4. Chmielewski, F.M., A. Muller and E. Bruns. 2004. Climate change and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agric. Forest Meteorol. 121:69-78. https://doi.org/10.1016/S0168-1923(03)00161-8
  5. Choi, C.H., S.G. Jung and K.H. Park. 2016. Analyzing relationship between satellite-based plant phenology and temperature. Journal of the KAGIS. 19(1):30-42 (in Korean).
  6. Donnelly, A., M.B. Jones and J. Sweeney. 2004. A review of indicatiors of climate change for use in Ireland. Int. J. Biometeorol. 48:1-12. https://doi.org/10.1007/s00484-003-0166-2
  7. Fitter, A.H., R.S.R. Fitter, I.T.B. Harris and M.H. Williamson. 1995. Relationship between frist flowering data and temperature in the flora of a locality in central England. Funct. Ecology 9:55-60. https://doi.org/10.2307/2390090
  8. Heo, I.H., S.Y. Kim, K.M. Lee, W.T. Kwon and S.H. Lee. 2008. Impacts of climate change on agriculture in Naju. J. Clim. Res. 3(1):17-30 (in Korean).
  9. Ho, C.H., E.J. Lee, I. Lee and S.J. Jeong. 2006. "Earlier spring in Seoul, Korea". Int. J. Climatol. 26:2117-2127. https://doi.org/10.1002/joc.1356
  10. Jeong, S.J., C.H. Ho, S.D. Choi, J.W. Kim, E.J. Lee and H.J. Gim. 2013. Satellite data-based phenological evaluation of the nationwide reforestation of South Korea. PloS ONE. 8(3):e58900. https://doi.org/10.1371/journal.pone.0058900
  11. Jo, H.K. and T.W. Ahn. 2008. Differences in phenological phases of plants subsequent to microclimate change. Korean J. Environ. Ecol. 22(3):221-229 (in Korean).
  12. Jung, E.J. and S.H. Lee. 2018. The realtionship between air temperature variability and the growth date of Cirtus unshiu in Jeju and Seogwipo. J. Clim. Res. 13(2):119-130 (in Korean). https://doi.org/10.14383/cri.2018.13.2.119
  13. Kang, H.S. 2013. Ecological responses of plants to climate change: Research trends and its applicability in Korea. Korean J. Ecol. Environ. 46(3):319-331 (in Korean). https://doi.org/10.11614/KSL.2013.46.3.319
  14. Kim, H.J., J.K. Hong, S.C. Kim, S.H. Oh and J.H. Kim. 2011. Plant phenology of threatened species for climate change in sub-zlpine zone of Korea - Especially on the summit area of Mt. Deogyusan -. Korean J. Plant Res. 24(5):549-556 (in Korean). https://doi.org/10.7732/kjpr.2011.24.5.549
  15. Kim, J.W. 2004. Vegetation Ecology. World Science Publishing Co., Seoul, Korea. pp. 1-308 (in Korean).
  16. Kitazono, K., Y. Kawakubo and K. Fujita. 2012. Effects of global warming on cultivation of Satsuma Mandarin in Kumamoto prefecture. Research Bulletin of the Kumamoto Prefectural Agricultural Research Center 19:1-17 (in Japanese).
  17. Korea Forest Service and Korea National Arboretum. 2009. Manual of conservation project of threatened plants for climate change. Korean Moonhwa-Printing Association of Person With Disabilities, Seoul, Korea. pp. 11-13. (in Korean).
  18. Korea Forest Service and Korea National Arboretum. 2013. Manual of conservation project of threatened plants for climate change. Sumeungil Publishing Co., Seoul, Korea. pp. 31-34 (in Korean).
  19. Lechowicz, M.J. 1995. Seasonality of flowering and fruiting in temperate forest trees. Can. J. Bot. 73(2):175-182. https://doi.org/10.1139/b95-021
  20. Lee, K.M., W.T. Kwon and S.H. Lee. 2009. A study on plant phenological trends in South Korea. Journal of KARG. 15(3):337-350 (in Korean).
  21. Lee, S.H., I.H. Heo, K.M. Lee, S.Y. Kim, Y.S. Lee and W.T. Kwon. 2008. Impacts of climate change on phenology and growth of crops: In the case of Naju. J. Geol. Soc. Korea 43(1):20-35 (in Korean).
  22. Lee, S.H. and K.M. Lee. 2003. The trend on th change of the cherry blossom flowering time due to the temperature change. J EIA. 12(1):45-54.
  23. Lee, S.I., S.H. Yeon, J.S. Cho and C.H. Lee. 2020. Growth characteristics of Veronica rotunda var. subintegra (Nakai) T. Yamaz. according to several cultivation conditions. Korean J. Plant Res. 33(1):24-32 (in Korean).
  24. Lee, W.C. and Y.J. Yim. 2002. Plant geography. Kangwon National University Press, Chuncheon, Korea. pp. 141-165 (in Korean).
  25. Linderholm, H.W. 2006. Growing season changes in the last century. Agric. Forest Meteorol.137(1):1-14. https://doi.org/10.1016/j.agrformet.2006.03.006
  26. Lu, P., Q. Yu, J. Liu and X. Lee. 2006. Advance of treeflowering dates in responses to urban climate change. Agric. Forest Meteorol. 138:120-131. https://doi.org/10.1016/j.agrformet.2006.04.002
  27. Menzel, A., T.H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kubler, P. Bissolli, O. Braslavska, A. Briede, F.M. Chmielewski, Z. Crepinsek, Y. Curnel, A. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. Mage, A. Mestre, O. Nordli, J. Penuelas, P. Pirinen, V. Remisova, H. Scheifnger, M. Striz, A. Susnik, A.J.H. Van vliet, F.E. Wielgolaski, S. Zach and A. Zust. 2006. European phenological response to climate change matches the warming pattern. Global Change Biol. 12(10):1969-1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x
  28. Nuttonson, M.Y. 1948. Some preliminary observations of phenological data as a tool in the study of photoperiodic and thermal requirements of various plant material: In Murneed, A.E. and R.D. Whyte (eds.), Vernalization and Hotoperiodism-A Symposium. Chronica Botanica Publishing Co., Waltham, MA (USA). pp. 129-143.
  29. Sagarin, R. and F. Micheli. 2001. Climte change in nontraditional data sets. Science 294:811 https://doi.org/10.1126/science.1064218
  30. Schwartz, M.D. 1999. Advancing to full bloom: planning phenological research for the 21st century. Int. J. Biometeorol. 42:113-118. https://doi.org/10.1007/s004840050093
  31. Schwartz, M.D., R. Ahas and A. Aasa. 2006. Onset of spring starting earlier across the Northern hemisphere. Global Change Biol. 12(2):343-351. https://doi.org/10.1111/j.1365-2486.2005.01097.x
  32. Sparks, T.H., E.P. Jeffree and C.E. Jeffree. 2000. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int. J. Biometeorol. 44(2):82-87. https://doi.org/10.1007/s004840000049
  33. Walkovszky, A. 1998. Changes in phenology of the locust tree (Robinia pseudoacacia L.) in Hungary. Int. J. Biometeorol. 41:155-160. https://doi.org/10.1007/s004840050069
  34. Whitfield, J. 2001. Climate change data: the budding amateurs. Nature 414:578-579. https://doi.org/10.1038/414578a
  35. Yim, Y.J. and T. Kira. 1975. Distribution of forest vegetation and climate in the Korean Peninsula. I. Some indices of thermal climate. Jap. J. Ecol. 25(2):77-88.