DOI QR코드

DOI QR Code

볍씨의 규산코팅방법에 따른 이용특성과 육묘효과

Methods of Application and Beneficial Effects of Silicate-Coating Rice Seeds

  • 강양순 (새턴바이오텍(주) 기업부설 작물수용성규산연구소) ;
  • 김완중 (새턴바이오텍(주) 기업부설 작물수용성규산연구소) ;
  • 황덕상 (새턴바이오텍(주) 기업부설 작물수용성규산연구소) ;
  • 김희규 (경상대학교 식물의학과)
  • 투고 : 2019.11.18
  • 심사 : 2020.01.18
  • 발행 : 2020.03.01

초록

벼 직파재배나 육묘에서 종자소독, 병충해방제, 시비 등에 요구되는 생산비절감기술로 개발된 기존 규산코팅볍씨(규산/Zeolite)의 단점 보완으로 신규 규산코팅기술이 개발되었다. 신규 규산코팅볍씨의 제조 및 이용특성과 육묘상자에서 건묘육성 및 벼 키다리병 경감효과를 명확하게 하기 위하여 벼 키다리병 이병성 감염종자를 소독 없이 마른 상태로 코팅한 볍씨와 중도저항성 소독된 보급종자를 마른 상태로 코팅한 볍씨를 토경조건과 수경조건에서 시험이 수행되었다. 1. 신규 규산코팅볍씨는 종자 100 g에 코팅 바인더 점액성 수용성규산 18 ml을 충분히 묻히고 거기에 Dolomite 80 g/철 5 g의 혼합분말을 고루 뿌려서 코팅되었다. 2. 신규 규산코팅볍씨의 특성은 종자무게의 1.84배이었고 중량, 코팅강도와 코팅색택 등이 기존 규산코팅볍씨보다 훨씬 개선되었다. 3. 신규 규산코팅볍씨의 묘는 무코팅볍씨에서 자란 묘의 연한 엽색과 늘어지는 초형에 비하여 짙은 엽색(SPAD치)으로 직립되었고 엽신의 규질화가 현저히 높았으며 묘소질(w/cm)은 유의하게 증가되었다. 특히 생육량과 엽색도는 토경조건에서 보다 영양이 결제된 수경조건에서 뚜렷하였다. 4. 47일간 육묘 중 벼 키다리병 발생은 파종 후 38일에 peak를 보였고 무코팅볍씨 발병률 54.2%에 비하여 신규 규산코팅에서는 68.8~70.7%의 방제가를 나타내었다. 이상을 종합하여 보면 벼농사에서 가장 많이 요구되는 규산질 비료를 Dolomite와 철분으로 종피에 코팅시켜서 만든 신규 규산코팅볍씨로 종자소독, 건묘육성 및 벼 키다리병 경감 효과 등은 친환경 저비용과 안전 쌀 생산에 크게 기여되리라 본다. 또한 장기 영양결제에도 육묘 중 뿌리 활력이나 엽의 노화 없이 정상생육이 지속되어 육묘시비량 절감 가능성도 보였고 금후 묘의 노화경감을 위한 최소 영양공급 연구가 요구되었다.

A new silicate coating technology was developed which reduces the impact of dust and loosening during seeding compared to existing silicate-coatings (Seed/Si/Zeolite), and therefore can lower the production costs of rice cultivation. In this method, 100 g of rice seed is coated with 18 mL of liquid silicic acid and then dressed with a mixture containing 80 g of dolomite and 5 g of iron. To determine the most effective method of application and ensure that seedlings developed healthily, a series of experiments were carried out. Infected seeds scattered in seedling boxes and pots (soil and hydroponic) were coated dry, without disinfection. In comparison to the seed which were not treated with the silicate-coating, the new seed (A) were 1.84 times heavier in weight, and were also improved in terms of coating strength and coating color. Compared to the seedlings grown from the non-coated seed, those grown from the new silicate-coated seed were of significantly higher quality (weight/length) and had erect, dark greenish leaves, which are ideal plant characteristics. This was most likely due to increased silicate uptake. The symptoms of bakanae disease in the non-coated seed peaked after 38 days to 54.2%, whereas the control value was 68.8% in the new silicate-coated seed (A). In the infected seedlings grown from the new silicate-coated rice seed, subnormal macro-conidia, namely, a sickle shape spore without a septum; a straight oblong shape spore without a septum and with a thick cell wall; and inter-septal necrosis of a normal spore were detected. It is believed that the strong alkalinity of silicic acid have acted as unfavorable conditions for pathogenicity. In seedlings grown from the new silicate coated rice seed under hydroponic conditions without nutrients, normal root activity and growth was maintained without leaf senescence. Therefore, it was possible to reduce the rate of fertilization. In the future, a new silicate-coated rice seed was required for the study of minimal nutrition for anti-aging of seedlings.

키워드

참고문헌

  1. Alyoshin, N. E., E. R. Alyoshin, and E. P. Alyoshin. 1985. Si content in the DNA of rice. Doklady Vaskhnil N 3. : 14-15.
  2. Alyoshin, N. E., E. R. Alyoshin, E. V. Lebedev, and E. P. Alyoshin. 1988. Influence of silicon and the antagonists on rice Mitochondria. International Rice Research Newsletter (IRRN) 13(3) : 9-10.
  3. Alyoshin, N. E., E. R. Avakyan, E. V. Levedev, and E. P. Alyoshin. 1989. Silicon content of chloroplast and aleurone. Soviet Agricultural Sciences 2 : 19-21.
  4. Armstrong, W. 1967. The oxidizing activity of roos in waterlogged soils. Physiol. Plant 20 : 920-926. https://doi.org/10.1111/j.1399-3054.1967.tb08379.x
  5. Baardseth, P. and Von Elbe J. H. 1989. Effect of ethylene, free fatty acid, and some enzyme systems on chlorophyll degradation. J. Food Sci. 54 : 1361-1363. https://doi.org/10.1111/j.1365-2621.1989.tb05993.x
  6. Choi, D. H. 1994. Determination of critical early seeding date for seedling emergence in dry-seeded rice based on statistical analysis of daily mean air temperature in Korea. Korean J. Crop Sci. 39(5) : 437-443.
  7. Choi, H. W., J. M. Kim, S. K. Hong, W. G. Kim, S. C. Chun, and S. H. Yu, 2009. Mating types and optimum culture conditions for sexual state formation of Fusarium fujikuroi isolates. Mycobiology 37 : 247-250. https://doi.org/10.4489/MYCO.2009.37.4.247
  8. Cock, J. and S. Yoshida. 1970. An assessment of the effects of silicate application on rice by a simulation method. Soil Sci. Plant Nutr. 16(5) : 212-214. https://doi.org/10.1080/00380768.1970.10432843
  9. Gupta, A. K., I. S. Solanki, B. M. Bashyal, Y. Singh, and K. Srivastava. 2015. Bakanae disease of rice - An emerging disease in Asia. J. of Animal. Plant Science 25(6) : 1499-1514.
  10. Hayes, A. B. 1981. The interaction of auxin and ethylene in the maintenance of leaf blade form in phaseolus vulgaris L. Var. Pinto. Amer. J. Bot. 68(6) : 733-740. https://doi.org/10.1002/j.1537-2197.1981.tb12406.x
  11. Hur, Y. J., S. B. Lee, D. G. Shin, T. H. Kim, J. H. Cho, S. I. Han, S. H. Oh, J. Y. Lee, Y. B, Son, J. H. Lee, T. M. Kwon, and D. S. Park. 2016. Screening of rice germ-plasm for bakanae disease resistance in rice. The Korean J. Breed. Sci. 48(1) : 22-28. https://doi.org/10.9787/KJBS.2016.48.1.022
  12. Inoue, H., M. Yamauchi, and H. Yanauchi. 2009. Control of seed borne disease of rice [Oryza sativa] seedling by coating seed with iron. Japanese J. of Phytopathology 75(3) : 164-169. https://doi.org/10.3186/jjphytopath.75.164
  13. Kang, Y. K. 1981. Silicon influence on physiological activities in rice. Ph.D. Thesis, Arkansas University. 84p.
  14. Kang, Y. S. 1985. The influences of silicon on growth of rice plant. Res. Rept. RDA (P.M & U) 27(1) : 57-72.
  15. Kang, Y. S. and J. W. Park. 1999. Influences of silicon on the control of temperature anf induction of electronic voltages in rice plant tissues. Proceeding of the 1st international silicon in agriculture conference on Sep. 26-30, 1999, in Florida, USA. pp. 35-36.
  16. Kang, Y. S. and J. W. Park. 2001. Influences of silicon on the control of temperature and induction of electronic voltages in rice plant tissues. In: Silicon in agriculture, Elsevier Science, Netherland. pp. 386-387.
  17. Kang, Y. S. and Y. T. Jung. 2002. Research on agricultural utilization of silicon in Korea progress and prospects. Proceeding of the 2nd international silicon in agriculture conference on Aug. 22-26. 2002 in Tsuruoka, Japan. pp. 262-265.
  18. Kang, Y. S., W. J. Kim, Y. J. Kim, K. H. Jung, and U. S. Choi. 2014. Control of bakanae disease (Gibberella fujikuroi) by rice seed coated with silicate in wet direct seeding. Advanced crop science research young scientist. Korean J. Crop Sci. p. 24. https://doi.org/10.7740/kjcs.2016.62.1.024
  19. Kang, Y. S., W. J. Kim, Y. J. Kim, K. H. Jung, and U. S. Choi. 2016. Bakanae disease reduction effect by use of silicate coated seed in wet direct-seeded rice. Korean J. Crop Sci. 61(1) : 9-16. https://doi.org/10.7740/kjcs.2016.61.1.009
  20. Kang, Y. S., W. J. Kim, and J. H. Roh. 2017a. Effect of silicatecoated rice seed on healthy seedling development and bakanae disease reduction when raising rice in seed boxes. Korean J. Crop Sci. 62(1) : 1-8. https://doi.org/10.7740/kjcs.2016.62.1.001
  21. Kang, Y. S., W. J. Kim, H. K. Kim, and M. S. Cho. 2017b. Effect of silicate-coated rice seed on bakanae disease (Gibberella fujikuroi) reduction in the rice cultivation. Proceeding of Global Conference on Plant Science and Molecular Biology (GPMB) on Sep.11-13, 2017, in Valencia, Spain. pp. 150-151.
  22. Kays, s. J. and J. E. Pallas Jr. 1980. Inhibition of photosynthesis by ethylene. Nature 285 : 51-52. https://doi.org/10.1038/285051a0
  23. Lee, Y. H., M. J. Lee, H. W. Choi, S. T. Kim, J. W. Park, I. S. Myung, K. S. Park, and S. W. Lee. 2011. Development of in vitro seedling method for selection of resistant rice against bakanae disease. Res. Plant Disease 17(3) : 288-294. https://doi.org/10.5423/RPD.2011.17.3.288
  24. Ma, J. F., Y. Miyake, and E. Takahashi, 2001. Silicon as a beneficial element for rice plants. Elsevier Science pp. 17-39.
  25. Ma, J. F. and E. Takahashi. 2002. Soil, fertilizer, and plant research in Japan. Elsevier Science pp. 100-106.
  26. Marie Luyckx, Jean-Francois Hansman, Stanley Lutts, and Gea Guerrie. 2017. Silicon and plants: Current knowledge and technological perspectives. Front Plant Sci. 8 : 411.
  27. Miyagawa, H., M. Yamauchi, and H. Inoue. 2013. The control of seed borne disease of rice seedling by iron coating seeds in a mass production machine. Ann. Rept. Kansai Pl. Prat.55: 23-30. https://doi.org/10.4165/kapps.55.23
  28. NICS, R.D.A. / INIA, Uruguay. 2005. Safranin-phenol method for detection of silicified cells in rice tissues. Manual for physiological studies of rice associated with the cold injury in Uruguay. NICS, R.D.A. pp. 78-80.
  29. Oertli, J. J. and L. Jacobson. 1960. Some quantitative considerations in iron nutrient of higher plants. Plant Physiol. 35: 683-688. https://doi.org/10.1104/pp.35.5.683
  30. Ou, S. H. 1985. Rice disease. CAB international commonwealth mycological Institute. Kew, Surrey, UK. The Cambrain News Ltd., pp. 268, 301-302.
  31. Ou, S. H. 1987. Rice disease. CAB international commonwealth mycological institute. Kew, Surrey, UK. p. 256.
  32. Ramesh, S., Y. T. Swati, J. shaily, and K. G. Raveesh. 2014. Effect of different cultural condition on the growth of Fusarium moniliforme causing bakanae disease. European J. of Molecular Biotec. 4(2) : 95-100. https://doi.org/10.13187/ejmb.2014.4.95
  33. Sanster, A. G. and M. J. Hodson. 1986. Silica in higher plants. In: Evered, D. and O'Connor, M., Silicon biochemistry, Ciba Found Symp. 121, Wiley, Chichester, UK. pp. 90-111.
  34. Saremi, H. and F. Farrokhi. 2004. Study on bakanae disease of rice and evaluation of cultivar in Gilan and Zanjan provinces, Iran Proc. Fourth International Iran and Russia Conference pp. 358-364.
  35. Shin, D. B., J. D. Goh, B. C. Lee, I. J. Kang, and H. W. Kang. 2014. Use of sodium hypochlorite for the control bakanae disease in rice. J. Korean Society of Plant Pathology 20(4) : 259-263.
  36. Yamauchi, M. 2017. A review of iron-coating technology to stabilize rice direct seeding onto puddled soil. Agronomy Journal 109(3) : 739-749. https://doi.org/10.2134/agronj2016.10.0569
  37. Yoshida, S. 1973. Effect of temperature on growth of the rice plant (Oryzae sativa, L) in a controlled environment. Soil. Sci. Plant Nutr. 19 : 299-310. https://doi.org/10.1080/00380768.1973.10432599
  38. Yoshida, S. 1975. The physiology of silicon in rice. Food. Fert. Technol. Cent. ASPAC, Taiwan, Ext. Bull. 25: 1-23.
  39. Yoshida, S. 1981. Fundamentals of rice crop science. IRRI. pp. 58, 115, 177-181.