DOI QR코드

DOI QR Code

Control of Red Pepper Anthracnose Using Bacillus subtilis YGB36, a Plant Growth Promoting Rhizobacterium

식물생장촉진근권세균 Bacillus subtilis YGB36을 이용한 고추 탄저병의 생물학적 방제

  • Lee, Yong Yoon (Department of Plant Medicals, Andong National University) ;
  • Lee, Younmi (Agricultural Science & Technology Research Institute, Andong National University) ;
  • Kim, Young Soo (Department of Plant Medicals, Andong National University) ;
  • Kim, Hyun Sup (Department of Plant Medicals, Andong National University) ;
  • Jeon, Yongho (Department of Plant Medicals, Andong National University)
  • 이용윤 (안동대학교 식물의학과) ;
  • 이연미 (안동대학교 농업과학기술연구소) ;
  • 김영수 (안동대학교 식물의학과) ;
  • 김현섭 (안동대학교 식물의학과) ;
  • 전용호 (안동대학교 식물의학과)
  • Received : 2020.02.06
  • Accepted : 2020.03.09
  • Published : 2020.03.31

Abstract

Red pepper, one of the major economic crops in Korea, is being affected by anthracnose disease caused by Colletotrichum acutatum. To control this disease, an antagonistic bacterial strain, Bacillus subtilis YGB36 identified by 16S rDNA sequencing, physiological and biochemical analyses is used as a biological control agent. In vitro screening revealed that the strain YGB36 possess strong antifungal activity against the pathogen Cylindrocarpon destructans. The strain exhibited cellulase, protease, amylase, siderophore production and phosphate solubility. In vitro conidial germination of C. acutatum was most drastically inhibited by YGB36 cell suspensions (106 cfu/ml) or culture filtrate. Development of anthracnose symptoms was reduced on detached immature green pepper fruits by treatment with cell suspensions, and its control value was recorded as 65.7%. The YGB36 bacterial suspension treatment enhanced the germination rate of red pepper seeds and promoted root development and growth under greenhouse conditions. The in vitro screening of fungicide and insecticide sensitivity test against YGB36 revealed that the bacterial growth was not affected by any of the insecticides, and 11 fungicides out of 21 used. Collectively, our results clearly suggest that the strain YGB36 is considered as one of the potential biocontrol agents against anthracnose disease in red pepper.

고추는 한국의 주요 경제 작물 중 하나이지만 재배과정에서 Colletotrichum acutatum에 기인한 탄저병이 많이 발생한다. 이의 방제를 위해 길항균인 Bacillus subtilis YGB36을 선발하여 16S rRNA 염기서열 및 생리·생화학적 분석을 통해 Bacillus subtilis로 동정하고 이를 생물학적 방제제로 개발하고자 실험을 진행하였다. In vitro screening에서 YGB36은 Cylindrocarpon destructans에 강한 항균활성을 나타내었고, cellulase, protease, amylase, siderophore 생산 및 phosphate solubility를 보유하고 있었다. 이 균주의 배양액(106 cfu/ml) 및 배양여액은 in vitro 실험에서 C. acutatum의 포자발아를 강하게 억제하였고, 고추 과실을 이용한 실내실험에서도 이 배양액이 탄저병 병반의 진전을 억제하였으며, 방제가는 65.7%로 나타났다. 아울러 YGB36배양액은 고추 종자의 발아 및 초기 뿌리 생장을 촉진하였고, 온실에서의 식물 생장을 촉진하였다. 기존 화학농약과의 혼용 가능성 조사 결과, YGB36은 실험에 사용한 모든 살충제에서 생존에 영향을 전혀 받지 않았으며, 살균제 21종 중 11종에서 잘 생존하였다. 따라서 YGB36균주는 고추 탄저병에 대한 생물농약으로서의 잠재적 가치가 상당한 것으로 판단된다.

Keywords

References

  1. Annapurna, K., Kumar, A., Kumar, L. V., Govindasamy, V., Bose, P. and Ramadoss, D. 2013. PGPR-induced systemic resistance (ISR) in plant disease management. In: Bacteria in Agrobiology: Disease Management, ed. by D. K. Maheshwari, pp. 405-425. Springer, Berlin, Germany.
  2. Bagg, A. and Neilands, J. B. 1987. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol. Rev. 51: 509-518. https://doi.org/10.1128/mr.51.4.509-518.1987
  3. Beneduzi, A., Ambrosini, A. and Passaglia, L. M. P. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35(4 Suppl): 1044-1051. https://doi.org/10.1590/S1415-47572012000600020
  4. Bhaskar, N., Sudeepa, E. S., Rashmi, H. N. and Selvi, A. T. 2007. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour. Technol. 98: 2758-2764. https://doi.org/10.1016/j.biortech.2006.09.033
  5. Borriss, R. 2011. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Bacteria in Agrobiology: Plant Growth Responses, ed. by D. K. Maheshwari, pp. 41-76. Springer-Verlag, Berlin, Germany.
  6. Dunlap, C. A., Kim, S.-J., Kwon, S.-W. and Rooney, A. P. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66: 1212-1217. https://doi.org/10.1099/ijsem.0.000858
  7. Han, J.-H., Park, G.-C., Kim, J.-O. and Kim, K. S. 2015. Biological control of Fusarium stalk rot of maize using Bacillus spp. Res. Plant Dis. 21: 280-289. (In Korean) https://doi.org/10.5423/RPD.2015.21.4.280
  8. Han, K.-S., Park, J.-H., Han, Y.-K. and Hwang, J.-H. 2009. Pathogenicity and occurrence of pepper seedling anthracnose caused by Collectotrichum acutatum. Res. Plant Dis. 15: 88-93. (In Korean) https://doi.org/10.5423/RPD.2009.15.2.088
  9. Kim, J. T., Park, S.-Y., Choi, W., Lee, Y.-H. and Kim, H. T. 2008. Characterization of Collectotrichum isolates causing anthracnose of pepper in Korea. Plant Pathol. J. 24: 17-23. https://doi.org/10.5423/PPJ.2008.24.1.017
  10. Kim, P. I., Ryu, J., Kim, Y. H. and Chi, Y.-T. 2010. Production of biosurfactant lipopeptides Iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20: 138-145. https://doi.org/10.4014/jmb.0905.05007
  11. Kim, S.-T. and Yun, S.-C. 2011. Biocontrol with Myxococcus sp. KYC 1126 against anthracnose in hot pepper. Plant Pathol. J. 27: 156-163. https://doi.org/10.5423/PPJ.2011.27.2.156
  12. Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. https://doi.org/10.1038/286885a0
  13. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 337: 1870-1874.
  14. Kwak, Y.-K., Kim, I.-S., Cho, M.-C., Lee, S.-C. and Kim, S. 2012. Growth inhibition effect of environment-friendly farm materials in Collectotrichum acutatum in vitro. J. Bio-Environ. Control. 21: 127-133.
  15. Lamsal, K., Kim, S. W., Kim, Y. S. and Lee, Y. S. 2012. Application of rhizobacteria for plant growth promotion effect and biocontrol of anthracnose caused by Colletotrichum acutatum on Pepper. Mycobiology 40: 244-251. https://doi.org/10.5941/MYCO.2012.40.4.244
  16. Lee, S. Y. 2010. Biological control of anthracnose (Collectotrichum gloeosporioides) in pepper by Streptomyces cavourensis SY224. M.S. thesis. Graduate School, Chonnam National University, Gwangju, Korea. 41 pp.
  17. Nakamura, A., Uozumi, T. and Beppu, T. 1987. Nucleotide sequence of a cellulase gene of Bacillus subtilis. Eur. J. Biochem. 164: 317-320. https://doi.org/10.1111/j.1432-1033.1987.tb11060.x
  18. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
  19. Paik, S. B., Kim, D. W. and Oh, Y. S. 1996. Biocontrol for red pepper anthracnose (Collectotrichum dematium) with phyllospheral microorganisms. B.S. thesis. Konkuk University, Seoul, Korea.
  20. Park, J.-W., Balaraju, K., Kim, J.-W., Lee, S.-W. and Park, K. 2013. Systemic resistance and growth promotion of chili pepper induced by an antibiotic producing Bacillus vallismortis strain BS07. Biol. Control 65: 246-257. https://doi.org/10.1016/j.biocontrol.2013.02.002
  21. Park, S.-J., Kim, G.-H., Kim, A. H., Lee, H., Gwon, H.-W., Kim, J. et al. 2012. Controlling effect of agricultural organic materials on phytophthora blight and anthracnose in red pepper. Res. Plant Dis. 18: 1-9. (In Korean) https://doi.org/10.5423/RPD.2012.18.1.001
  22. Park, S. M., Jung, H. J. and Yu, T. S. 2006. Screening of an antagonistic bacterium for control of red-pepper anthracnose, Collectotrichum gloeosporioides. J. Life Sci. 16: 420-426. https://doi.org/10.5352/JLS.2006.16.3.420
  23. Qiao, J.-Q., Wu, H.-J., Huo, R., Gao, X.-W. and Borriss, R. 2014. Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem. Biol. Technol. Agric. 1: 12. https://doi.org/10.1186/s40538-014-0012-2
  24. Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  25. Sazci, A., Erenler, K. and Radford, A. 1986. Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J. Appl. Bacteriol. 61: 559-562. https://doi.org/10.1111/j.1365-2672.1986.tb01729.x
  26. Seo, J., Yi, Y., Kim, B.-S., Hwang, J. M. and Choi, S. W. 2011. Disease occurrence on red-pepper plants surveyed in northern Kyungbuk province, 2007-2008. Res. Plant Dis. 17: 205-210. (In Korean) https://doi.org/10.5423/RPD.2011.17.2.205
  27. Spaepen, S., Vanderleyden, J. and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  28. Swain, M. R., Naskar, S. K. and Ray, R. C. 2007. Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol. J. Microbiol. 56: 103-110.
  29. The Korean Society of Plant Pathology. 2009. List of Plant Disease in Korea. 5th ed. The Korean Society of Plant Pathology, Suwon, Korea. 859 pp.
  30. Thippeswamy, S., Girigowda, K. and Mulimani, V. H. 2014. Isolation and identification of ${\alpha}$-amylase producing Bacillus sp. from dhal industry waste. Indian J. Biochem. Biophys. 43: 295-298.
  31. Wang, L.-T., Lee, F.-L., Tai, C.-J. and Kuo H.-P. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58: 671-675. https://doi.org/10.1099/ijs.0.65191-0
  32. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  33. Zivkovic, S., Stojanovic, S., Ivanovic, Z., Gavrilovic, V., Popovic, T. and Balaz, J. 2010. Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch. Biol. Sci. Belgrade 63: 611-623.