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Abstract
The gamma distribution is a flexible right-skewed distribution widely used in many areas, and it is of great

interest to estimate the probability of a random variable exceeding a specified value in survival and reliability
analysis. Therefore, the study develops a fixed-accuracy confidence interval for P(X > c) when X follows a
gamma distribution, Γ(α, β), and c is a preassigned positive constant through: 1) a purely sequential procedure
with known shape parameter α and unknown rate parameter β; and 2) a nonparametric purely sequential pro-
cedure with both shape and rate parameters unknown. Both procedures enjoy appealing asymptotic first-order
efficiency and asymptotic consistency properties. Extensive simulations validate the theoretical findings. Three
real-life data examples from health studies and steel manufacturing study are discussed to illustrate the practical
applicability of both procedures.
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1. Introduction
As one of the most important distributions in probability and statistics, the gamma distribution is a
flexible right-skewed distribution widely used in many areas such as reliability, environment, insur-
ance and medicine. Burgin (1975) justified the applicability of the gamma distribution to inventory
control. Vaz and Fortes (1988) discussed fitting a gamma distribution for grain sizes in a poly-crystal.
Husak et al. (2007) used the gamma distribution to model rainfall data. Most recently, Johnson and
Kliche (2020) compared seven estimation procedures for gamma parameters on raindrop size data.
Since Ohlsson and Johansson (2010), the gamma distribution has become more or less the standard
option in modeling claim cost in the insurance industry.

Many researchers have worked on the estimation of the parameters in two-parameter gamma dis-
tributions. Choi and Wette (1969) examined the numerical technique of the maximum likelihood
method to estimate both parameters of a gamma distribution. Chen and Mi (1998) discussed the point
estimation for the scale parameter of a gamma distribution based on grouped data, assuming that the
shape parameter was known. Iliopoulos (2016) constructed exact confidence intervals for the shape
parameter of a gamma distribution. The author compared the exact confidence intervals with bootstrap
confidence intervals via simulation studies. Son and Oh (2006) developed a Gibbs sampling Bayesian
estimator of the two-parameter gamma distribution under the non-informative prior.
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Most of the literature on the parameter estimation of gamma distributions is based on fixed-
sample-size procedures. That is, one aims to find the estimate for parameters of interest based on
the obtained data, no matter how large or small it is. In certain situations, especially when data col-
lecting process is time-consuming or costly, it is of great importance to understand what sample size is
needed to obtain the value of estimators with prescribed accuracy, which, however, depends on some
unknown nuisance parameter and cannot be fixed in advance. Thus, sequential sampling becomes
necessary to solve such problems. Takada and Nagata (1995) considered a sequential procedure for
building a fixed-width confidence interval for the mean of a gamma distribution. Isogai and Uno
(1995) developed a sequential procedure for estimating the mean of a gamma distribution under a loss
function of squared error plus linear cost. Liu (2001) worked on approximating the optimal fixed sam-
ple size expected reward through a two-stage sampling procedure. Recently, Zacks and Khan (2011)
developed two-stage and sequential procedures of conducting fixed-width confidence interval estima-
tion for the scale parameter when the shape parameter is known. Mahmoudi and Roughani (2015)
studied a bounded risk two-stage sampling procedure for estimating the scale parameter of a gamma
distribution with the shape parameter known. Roughani and Mahmoudi (2015) derived explicit for-
mulas for the expected value and risk of the estimator of the scale parameter in a gamma distribution,
where the shape parameter was assumed known. One may achieve a broad-ranging review in the
field of sequential analysis by combining selected parts of interest from the following monographs
and references therein: Stein (1949), Anscombe (1952, 1953), Chow and Robbins (1965), Woodroofe
(1977), Ghosh and Mukhopadhyay (1981), Siegmund (1985), Ghosh et al. (1997) and Mukhopadhyay
and de Silva (2009).

In this paper, we will focus on constructing a fixed-accuracy confidence interval for P(X > c)
where X is a random variable that follows a gamma distribution, and c is a preassigned positive
constant. In many applications, it is desired to estimate the probability of a random variable exceeding
a specified value. For instance, in industrial hygiene, it is of interest to estimate the probability
that the exposure level (level of exposure to a contaminant in a workplace) of a worker exceeds the
occupational exposure limit (OEL; usually set by the Occupational Safety and Health Administration).
See Krishnamoorthy and Mathew (2009). In lifetime data analysis, people are often interested in
crucial events such as failure of equipment, death of a person, and development of symptoms of
disease. The time to the occurrence of the event is called lifetime. There is a large volume of literature
on modeling lifetime data using the gamma distribution. One is referred to Lawless (1982), Ansell and
Phillips (1994), Balakrishnan and Ling (2014), Balakrishnan et al. (2019), etc. Moreover, the widely
used exponential distribution is considered as a special case of the gamma distribution. One may see
Nadarajah and Gupta (2007), Piegorsch (2015) and Dagpunar (2019) for more details. Therefore, it is
essential to know the probability of a gamma random variable X exceeding a given value of interest,
especially when at least one parameter is unknown. To the best of our knowledge, little literature
has been focused on the confidence interval estimation of the rate parameter of a gamma distribution.
And no literature exists in building a fixed-accuracy confidence interval for a function of the rate
parameter (e.g., P(X > c)). Due to the fact that a fixed-width confidence interval is very likely to
contain a negative lower bound or an upper bound being greater than 1, and it does not make sense for
P(X > c) to be negative or to exceed 1, the problem for estimating P(X > c) will be better addressed
using a fixed-accuracy confidence interval when the rate parameter is unknown.

Let us begin with a gamma random variable (X ∼ Γ(α, β)) with the associated density function:

f (x) =
βα

Γ (α)
xα−1e−βx, for x > 0, α, β > 0. (1.1)
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Here, β, the rate parameter, is of interest and remains unknown to us. We shall point out that in some
research work, authors alternatively use θ = 1/β, the scale parameter, to characterize the gamma
distribution. α is called the shape parameter, and can be either known or unknown.

The rest of the paper is organized as the following: In Section 2, we provide a purely sequential
procedure to estimate P(X > c) with X coming from a two-parameter gamma population with known
shape parameter α and unknown rate parameter β. We discuss some appealing properties of this
procedure, and we support our findings through extensive simulations. In Section 3, we develop a
nonparametric purely sequential procedure to estimate P(X > c) when both α and β are unknown.
We also present some interesting properties of our proposed stopping rule followed by extensive
simulations. Section 4 includes illustrations of the purely sequential procedures discussed in Sections
2 and 3 on three real-life data sets. Section 5 provides some concluding thoughts.

2. Sequential fixed-accuracy confidence intervals with known ααα

In the situation when α is known (for example, the exponential distribution is a special case of Γ(α, β)
with α = 1), we can express the desired probability of X exceeding a constant c(> 0) with an incom-
plete gamma function as follows:

p ≡ p(β) = Pβ(X > c) = Pβ(Xβ > cβ) = 1 − F(cβ), (2.1)

where F(·) stands for the distribution function of Γ(α, 1). Further, we define

q ≡ q(β) =
p

1 − p
, (2.2)

and q has a range of (0,∞).
Starting with a random sample, X1, . . . , Xn, from a Γ(α, β) population, one can easily obtain the

maximum likelihood estimator (MLE) of β, say β̂n:

β̂n =
α

X̄n
, (2.3)

where X̄n = n−1 ∑n
i=1 Xi is the sample mean. Further, using the invariant property of MLE, we have

the MLEs of p and q given as follows, respectively:

p̂n = 1 − F
(
cβ̂n

)
, (2.4)

and

q̂n =
p̂n

1 − p̂n
. (2.5)

The central limit theorem (CLT) for MLE tells us that as n→ ∞,

√
n
(
β̂n − β

) D→ N
(
0, α−1β2

)
, (2.6)

where
D→ represents convergence in distribution. Applying the delta method, we have that as n→ ∞,

√
n
(
log q̂n − log q

) D→ N
(
0, σ2

β

)
, (2.7)
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where “log” represents the natural logarithm, and

σ2
β = α

−1β2
(

d log q
dβ

)2

. (2.8)

Note that by definition

log q = log p − log(1 − p), (2.9)

so

d log q
dβ

=
1
p

dp
dβ
− 1

1 − p

(
−dp

dβ

)
= − cαβα−1e−cβ

Γ(α)F(cβ)(1 − F(cβ))
. (2.10)

And we have the expression of σ2
β:

σ2
β =

c2αβ2αe−2cβ

αΓ2(α)F2(cβ) (1 − F(cβ))2 . (2.11)

To estimate p = Pβ(X > c), we first focus on q = p/(1 − p), and consider a fixed-accuracy
confidence interval for q of the form given by

Jn;1 =
(
d−1q̂n, dq̂n

)
, (2.12)

with d > 1 fixed. Obviously, Jn;1 is a subset of R+, and thus takes into account the positivity of the
parameter q. One may refer to Mukhopadhyay and Banerjee (2014), Banerjee and Mukhopadhyay
(2016), Mukhopadhyay and Zhuang (2016), Bapat (2018) and other sources for additional background
information on fixed-accuracy confidence interval estimation.

With a prescribed significance level 0 < γ < 1, Jn;1 should also satisfy the condition that the
coverage probability should be at least 1 − γ or approximately 1 − γ; that is,

Pβ
{
q ∈ Jn;1

} ≥ 1 − γ, (2.13)

from which it follows that

Pβ

{√
n
∣∣∣log q̂n − log q

∣∣∣σ−1
β ≤

√
nσ−1

β log d
}
≥ 1 − γ ⇒ n ≥

(
z

log d

)2

σ2
β,

where z ≡ zγ/2 stands for the upper 100(γ/2) quantile of a standard normal distribution. Now, we
define the optimal fixed sample size to be

n∗1 ≡ n∗1(d) =
(

z
log d

)2

σ2
β. (2.14)

The magnitude of n∗1, unfortunately, remains unknown due to the fact that σ2
β depends on the unknown

parameter β. Therefore, it is essential to estimate σ2
β by updating its estimator stage-wise as needed.

Customarily, in the light of (2.3) and (2.11), one may use the MLE of σ2
β given by

σ̂2
n;1 ≡ σ2

β̂n
=

c2αβ̂2α
n e−2cβ̂n

αΓ2(α)F2
(
cβ̂n

) (
1 − F

(
cβ̂n

))2 . (2.15)
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2.1. A purely sequential procedure

In the light of Anscombe (1953) and Chow and Robbins (1965) who established fundamental the-
ory of sequential estimation, we propose a purely sequential procedure to deal with the problem of
constructing a fixed-accuracy confidence interval for Pβ(X > c) under a gamma population when the
rate parameter is unknown. The basic idea is that after a pilot sample, we draw observations one
by one, and terminate sampling immediately when there are enough observations according to some
predefined stopping rule.

Let

P1 : N1 ≡ N1(d) = inf

n ≥ m : n ≥
(

z
log d

)2

σ̂2
n;1

 , (2.16)

where m ≥ 1 indicates a pilot sample size, and σ̂2
n;1 is defined in (2.15). That is, we first take a sample

of size m, and check whether m ≥ (z/log d)2σ̂2
m;1 is true or not. If it is true, we do not take any extra

observations, and the final sample will be the pilot sample. Otherwise, we draw one observation at-
a-time, check the stopping rule (2.16) successively with renewed σ̂2

n;1, and stop sampling at the first
time when n ≥ (z/log d)2σ̂2

n;1 is observed and the terminated sample size is N1 = n. We state Theorem
1 to show that the procedure P1 terminates w.p.1.

Theorem 1. For the purely sequential fixed-accuracy confidence interval estimation procedure P1
given in (2.16), with all fixed α, β, γ, d, c, and m, we have:

Pβ(N1 < ∞) = 1. (2.17)

Proof: Let
P→ denote convergence in probability. It is well-known that β̂n is a consistent estimator of

β, and hence β̂n
P→ β as n→ ∞. Note that σ̂2

n;1 is a continuous function of β̂n, so by Slutsky’s theorem,

σ̂2
n;1

P→ σ2
β as n→ ∞. In view of (2.16), it is easily seen that Pβ(N1 < ∞) = 1. �

Upon termination, with the acquired data

{N1, X1, . . . , Xm, . . . , XN1 },

the 100(1 − γ)% fixed-accuracy confidence interval for q will be:

JN1;1 =
(
d−1q̂N1 , dq̂N1

)
=

(
p̂N1

d(1 − p̂N1 )
,

dp̂N1

1 − p̂N1

)
,

and accordingly, the confidence interval for p = Pβ(X > c) will be:

J∗N1;1 =

(
p̂N1

d − (d − 1) p̂N1

,
dp̂N1

1 + (d − 1) p̂N1

)
,

where p̂N1 comes from (2.4) with the fully acquired data.
Now, we are in a position to discuss the appealing asymptotic efficiency and consistency properties

for this newly proposed purely sequential procedure P1.
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Theorem 2. For the purely sequential fixed-accuracy confidence interval estimation procedure P1
given in (2.16), with all fixed α, β, c, γ, and m, we have:

lim
d→1

Eβ

[
N1

n∗1

]
= 1 [Asymptotic First-Order Efficiency], (2.18)

lim
d→1

Pβ
{
q ∈ JN1;1

}
= 1 − γ [Asymptotic Consistency], (2.19)

where n∗1 is defined in (2.14).

Proof: We prove the asymptotic first-order efficiency and consistency by applying a general frame-
work of purely sequential fixed-width confidence intervals based on MLE proposed in Yu (1989) with
the stopping rule given by

N = inf
{
n ≥ m : In

(
θ̂n

)
≥ λ

}
,

where m is a pilot sample size, θ̂n is the MLE of a generic parameter θ, In(θ̂n) is the observed Fisher
information, and λ is a multiplier such that λθ indicates an optimal sample size.

Observe that a corresponding confidence interval can be constructed for log q in the light of Jn;1
from (2.12) for q as follows: (

log q̂n − log d, log q̂n + log d
)
, (2.20)

which is symmetric about log q̂n with a fixed width of 2 log d. The reciprocal for the asymptotic
variance of

√
n(log q̂n − log q), given by 1/σ2

β, can be interpreted as the Fisher information in terms
of log q, and accordingly n/σ̂2

n;1 is the observed Fisher information obtained from n observations.
For this fixed-width confidence interval estimation problem, the optimal fixed sample size is still

n∗1 defined in (2.14). Therefore, the associated stopping rule remains to be (2.16), and it would match
Yu’s (1989) stopping rule by noting that In(θ̂n) = n/σ̂2

n;1 and λ = (z/ log d)2. Along the lines of Yu
(1989, Theorems 2 and 3), both (2.18) and (2.19) stand. �

2.2. Simulated performances

To investigate the performance of the purely sequential fixed-accuracy confidence interval estimation
procedures P1 based on the stopping rule given by (2.16), we include a simulation study under the
exponential case; that is, the shape parameter α is fixed and known to be 1. In order to draw eligible
pseudo-random observations, we fixed β = 2, but pretended it had been unknown to us. Then, we set
c = α/β = 0.5 so that Pβ(X > c) to be estimated represented the probability that an observation would
turn out larger than the mean value. For brevity alone, we present summaries when the pilot sample
size was m = 20, and the significance level γ = 0.05, while a wide range of d values were chosen,
including d = 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50.

We summarized the following quantities in Table 1 by running 10,000 independent trials: the mean
and standard deviation of the terminated sample sizes, N̄1 and s(N1); the ratio of N̄1 to the optimal
fixed sample size n∗1 as well as the difference N̄1 − n∗1; the average coverage probability cp1, which is
calculated by checking the percentage of the obtained confidence intervals containing the true value
of p out of 10,000 intervals, and the corresponding standard error s(cp1); and the mean of estimated
values of p = Pβ(X > c) with its standard error, ¯̂pN1 and s( ¯̂pN1 ).

In Table 1, N̄1 increases as the preassigned accuracy d decreases. N̄1/n∗1 is close to 1 and it
gets closer to 1 as d goes smaller. These are also shown in Figures 1 and 2. The average coverage
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Table 1: Simulation results by implementing P1 as (2.16) using Γ(1, 2) with γ = 0.05, c = 0.5, and m = 20
under 10,000 runs, where p = Pβ(X > c) = 0.3679

d n∗1 N̄1 s(N1) N̄1/n∗1 N̄1 − n∗1 cp1 s(cp1) ¯̂pN1 s( ¯̂pN1 )
1.50 58.48 59.76 6.39 1.0219 1.28 0.9525 0.0021 0.3695 0.0005
1.45 69.64 70.94 7.00 1.0187 1.30 0.9569 0.0020 0.3692 0.0004
1.40 84.92 86.21 7.74 1.0152 1.29 0.9524 0.0021 0.3691 0.0004
1.35 106.75 107.95 8.60 1.0113 1.20 0.9539 0.0021 0.3691 0.0003
1.30 139.66 140.82 9.78 1.0082 1.16 0.9558 0.0021 0.3690 0.0003
1.25 193.08 194.36 11.59 1.0066 1.28 0.9517 0.0021 0.3684 0.0003
1.20 289.21 290.28 14.11 1.0037 1.07 0.9536 0.0021 0.3685 0.0002
1.15 492.17 493.32 18.46 1.0023 1.15 0.9535 0.0021 0.3682 0.0002
1.10 1058.32 1059.17 26.94 1.0008 0.85 0.9511 0.0022 0.3682 0.0001
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Figure 1: N̄1 v.s. d from Table 1.
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Figure 2: N̄1/n∗1 v.s. d from Table 1.

probability cp1 is close to 1 − γ = 0.95, and its standard error s(cp1) is small across the board.
Moreover, the differences between N̄1 and n∗1 are small and consistent for different values of d, which
is around 1 across the board. This empirically validates that our newly proposed sampling procedure
P1 gives a very consistent and efficient determination of the required sample size for estimation. From
the last two columns, we can tell ¯̂pN1 values are close to p with tiny standard errors, which suggests
that our sampling procedure can provide perfect estimates for this probability of interest.
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3. Sequential fixed-accuracy confidence intervals with unknown ααα

For a two-parameter gamma distribution Γ(α, β) with both α and β unknown, we can no longer imple-
mentP1 as per (2.16) to obtain a fixed-accuracy confidence interval for p that is defined in (2.1). Also,
in this case, the MLEs of α and β have no closed-form expressions, and can only be solved numeri-
cally. In this section, we therefore develop a sequential fixed-accuracy confidence interval estimation
methodology from a nonparametric perspective.

Let us define a new random variable Y based on the gamma random variable X: for a random
sample of size n, X1, . . . , Xn, let Yi = I{Xi>c} with i = 1, . . . , n, where IA is the indicator function of
an event A. Clearly, Y1, . . . , Yn are independent and identically distributed Bernoulli random variables
with probability of success being p as is defined in (2.1).

Then,

p̃n = Ȳn = n−1
n∑

i=1

Yi (3.1)

serves as an unbiased and consistent estimator of p. Furthermore, it is also the MLE of p under
circumstances where both α and β are unknown in a gamma distribution. By CLT, it further holds that
as n→ ∞,

√
n ( p̃n − p)

D→ N(0, p(1 − p)). (3.2)

Similarly, we define

q̃n =
p̃n

1 − p̃n
, (3.3)

so following the delta method, as n→ ∞, we have

√
n
(
log q̃n − log q

) D→ N
(
0, σ2

p

)
, (3.4)

where σ2
p = 1/{p(1 − p)}. In the light of (2.12) and (2.13), with preassigned d and γ, we consider the

100(1 − γ)% fixed-accuracy confidence interval for q:

Jn;2 =
(
d−1q̃n, dq̃n

)
, (3.5)

which additionally satisfies the condition that

Pα,β{q ∈ Jn;2} ≥ 1 − γ (3.6)

in order to obtain a confidence interval with 100(1 − γ)% confidence level.
Likewise, we derive an alternative optimal fixed sample size given by

n∗2 ≡ n∗2(d) =
(

z
log d

)2

σ2
p, (3.7)

which remains unknown, again. Therefore, it is essential to estimate σ2
p through sequential proce-

dures. Here, we adopt the estimator

σ̂2
n;2 ≡ σ2

p̃n
=

1
p̃n(1 − p̃n)

. (3.8)
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3.1. A purely sequential procedure

One can immediately identify a similarity between (2.14)–(2.15) and (3.7)–(3.8). For situations when
both α and β are unknown, we can follow along the lines of Section 2, and develop a purely sequential
fixed-accuracy confidence interval estimation procedure associated with the following stopping rule:

P2 : N2 ≡ N2(d) = inf

n ≥ m : n ≥
(

z
log d

)2 (
σ̂2

n;2 + n−1
) , (3.9)

where m ≥ 1 continues to indicate a pilot sample size, and σ̂2
n;2 is defined in (3.8). Different from

the stopping rule (2.16), the term n−1 is incorporated here to prevent unexpected early termination of
sampling due to the fact that p̃n is discrete and hence has a positive probability to be 0 or 1.

With the pilot sample data, if m ≥ (z/log d)2(σ̂2
m;2 + m−1), we do not take any extra observations,

and the final sample is the pilot sample. Otherwise, we draw one observation at-a-time and check the
stopping rule (3.9) successively with updated σ̂2

n;2 until for the first time n ≥ (z/log d)2(σ̂2
n;2 + n−1)

is observed. And the final sample size will be N2 = n(> m). The following theorem states that the
procedure P2 also terminates w.p.1.

Theorem 3. For the purely sequential fixed-accuracy confidence interval estimation procedure P2
given in (3.9), with all fixed α, β, γ, d, c, and m, we have:

Pα,β(N2 < ∞) = 1. (3.10)

Proof: Clearly, Ȳn
P→ p as n → ∞. Applying Slutsky’s theorem, we have that σ̂2

n;2 → σ2
p as n → ∞.

Therefore, Pα,β(N2 < ∞) = 1 holds. �

Upon termination, with the acquired data{
N2, X1, . . . , Xm, . . . , XN2

}
,

we propose the 100(1 − γ)% confidence interval for q is:

JN2;2 =
(
d−1q̃N2 , dq̃N2

)
=

(
p̃N2

d(1 − p̃N2 )
,

dp̃N2

1 − p̃N2

)
,

and accordingly, the confidence interval for p = Pα,β(X > c) is:

J∗N2;2 =

(
p̃N2

d − (d − 1) p̃N2

,
dp̃N2

1 + (d − 1) p̃N2

)
for p,

where p̃N2 comes from (3.1). The purely sequential procedure P2 also enjoys asymptotic first-order
efficiency and consistency.

Theorem 4. For the purely sequential fixed-accuracy confidence interval estimation procedure P2
given in (3.9), with all fixed α, β, γ, c, and m, we have:

lim
d→1

Eβ

[
N2

n∗2

]
= 1 [Asymptotic First-Order Efficiency], (3.11)

lim
d→1

Pβ
{
q ∈ JN2;2

}
= 1 − γ [Asymptotic Consistency], (3.12)
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Table 2: Simulation results by implementing P2 as (3.9) using Γ(2, 2) with γ = 0.05, c = 1, and m = 20 under
10,000 runs, where p = Pα,β(X > c) = 0.4060

d n∗2 N̄2 s(N2) N̄2/n∗2 N̄2 − n∗2 cp2 s(cp2) ¯̃pN2 s( ¯̃pN2 )
1.70 56.57 58.27 3.35 1.0301 1.70 0.9599 0.0020 0.4086 0.0006
1.65 63.52 65.24 3.40 1.0271 1.72 0.9557 0.0021 0.4083 0.0006
1.60 72.11 73.87 3.63 1.0245 1.76 0.9615 0.0019 0.4079 0.0006
1.55 82.93 84.69 3.82 1.0212 1.76 0.9551 0.0021 0.4075 0.0005
1.50 96.89 98.68 4.10 1.0184 1.79 0.9562 0.0020 0.4075 0.0005
1.45 115.38 117.19 4.38 1.0157 1.81 0.9491 0.0022 0.4075 0.0004
1.40 140.70 142.53 4.72 1.0131 1.83 0.9503 0.0022 0.4072 0.0004
1.35 176.86 178.66 5.35 1.0102 1.80 0.9540 0.0021 0.4070 0.0004
1.30 231.40 233.15 6.00 1.0075 1.75 0.9479 0.0022 0.4069 0.0003
1.25 319.90 321.69 6.96 1.0056 1.79 0.9526 0.0021 0.4068 0.0003
1.20 479.19 480.97 8.63 1.0037 1.78 0.9469 0.0022 0.4064 0.0002
1.15 815.46 817.23 11.03 1.0022 1.77 0.9521 0.0021 0.4063 0.0002
1.10 1753.49 1755.38 16.14 1.0011 1.89 0.9527 0.0021 0.4061 0.0001

where n∗2 is defined in (3.7).

Theorem 4 can be proved in the same fashion as we proved Theorem 2, as long as one notes that
n/σ̂n;2 is the observed Fisher information in terms of log q and refers to Yu (1989). We leave out many
details here for brevity.

3.2. Simulated performances

Next, we include a simulation study by implementing the purely sequential fixed-accuracy confidence
interval estimation procedures P2 based on the stopping rule given by (3.9) in an analogous way as
we did in Sections 2. We drew pseudo-random observations from a Γ(2, 2) population; that is, we had
fixed α = 2 and β = 2, but pretended that they were unknown. Then, we set c = α/β = 1 so that
Pα,β(X > c) represented the probability that an observation would turn out larger than the mean value.
For brevity alone, we present in Table 2 the selected summaries when the pilot sample size m = 20,
the significance level γ = 0.05, and d = 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60,
1.65, 1.70.

Running 10,000 independent trials, we reported the mean and standard deviation of the terminated
sample sizes N̄2 and s(N2), the ratio of N̄2 to the optimal fixed sample size n∗2 which should be close
to 1, the average coverage probability cp2 which should be comparable with 1 − γ (= 0.95) along
with its standard error s(cp2), and the mean of estimated values of p = Pα,β(X > c) with its standard
error, ¯̃pN2 and s( ¯̃pN2 ). The simulation results in Table 2 obviously double validate all the findings
of the nonparametric procedure that we proposed for (3.9). Moreover, it is worth mentioning that
the differences between N̄2 and n∗2 were empirically around 1.7–1.8 for different values of d, which
further shows that our proposed procedure P2 gives a very consistent and efficient determination of
the required sample size for estimation. And that ¯̃pN2 values are close to p with tiny standard errors
suggests the sampling procedure can provide perfect estimates for this probability of interest.

4. Real data illustrations

To demonstrate the practical applicability of our newly proposed fixed-accuracy confidence interval
estimation procedures, we include illustrations using three real-life data sets: (i) the urine albumin-to-
creatinine ratios (UACR, mg/g) of 5255 adolescent survey participants from NHANES 1999–2004,
referred to as the “UACR data”; (ii) excess cycle times data in steel manufacturing; (iii) survival times
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Figure 3: N̄2 v.s. d from Table 2.
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Figure 4: N̄2/n∗2 v.s. d from Table 2.

data from a group of 97 female dementia patients diagnosed at age 70–74.

4.1. Illustration I: using UACR data

The reference population for our analysis is created using survey participants from NHANES 1999–
2014 who met the following criteria: between 12 and 17 years old, not pregnant, blood pressure
< 120/80 mmHg, without diabetes, no prescription medications used within the previous 30 days, and
a Z-score for weight-to-height ratio ≤ 2. This yields a reference sample of size n = 5255. The UACR
data were analyzed in Zou and Young (2020), where the authors had established a one-sided upper
tolerance limit of 0.7358 mg/g and suggested to classify adolescents with UACR values falling below
it as “strictly normal.” Interested readers may refer to the paper, and more background information is
omitted here.

For illustrative purposes, we also treated the UACR data of size n = 5255 as our population, to
which the exponential distribution gave a good fit (Zou and Young, 2020); that is, the shape parameter
α = 1, but the rate parameter β was assumed unknown. We set c = 0.7358 and proceeded to esti-
mate p = Pβ(X > c), which can be interpreted as the proportion of healthy adolescents with mildly
increased UACR. Implementing the procedures P1 introduced earlier to draw observations from the
UACR data set under simple random sampling without replacement, we constructed fixed-accuracy
confidence intervals for q and p, respectively. The results are summarized in Table 3.
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Table 3: Fixed-accuracy confidence intervals using the UACR data with γ = 0.05, c = 0.7358 and m = 20
implementing P1 from (2.16)

d N1 JN1;1 for q J∗N1 ;1 for p
1.20 745 (0.0993, 0.1429) (0.0903, 0.1251)
1.18 1045 (0.0758, 0.1055) (0.0705, 0.0955)
1.16 1388 (0.0707, 0.0951) (0.0660, 0.0868)
1.14 1586 (0.0890, 0.1156) (0.0817, 0.1037)
1.12 2448 (0.0685, 0.0859) (0.0641, 0.0791)
1.10 2939 (0.0911, 0.1103) (0.0835, 0.0993)

Table 4: Final sample data of excess cycle times using P1 from (2.16)

5 32 3 21 7 3 1 7 4 4 9 7 2 11 4 11
5 1 5 7 13 3 10 8 10 11 32 11 3 11 3 7
3 5 12 3 3 2 2 8 10 21 13 3 8 2 8 3
14 8 1 2 3 15 1 3 1 2 5 10 5 1 10 3
2 2 5 4 12 5 8 7 5 10 6 12 3 8 1 1
7 5 2 2 21

4.2. Illustration II: using excess cycle times data

The excess cycle times data in steel manufacturing was first given in Example 6.1 from Barnett and
Lewis (1994) and it is assumed to be a sample from an exponential population. Kimber (1982) and
Lin and Balakrishnan (2009) declared that the observed value 92 is an outlier. For this illustration, we
use the sample data without the data point 92, and set the shape parameter α = 1 with an unknown
rate parameter. We are interested in knowing the excess cycle time being greater than 35 as 35 is the
largest normal value that is observed. We further assigned m = 5 and γ = 0.05. In the first step, we
took the first five data points as our pilot sample data. Then, we checked with the stopping rule as
per (2.16) and found it was not satisfied. Thus, we continued our sampling one-at-a-time according
to (2.16). In the end, the sampling was terminated with 85 observations, which was recorded in
Table 4 as the observations came in. The final 95% confidence interval estimation for Pβ(X > 35) is
(0.00214, 0.01897).

4.3. Illustration III: using survival time data from dementia patients

To illustrate the nonparametric procedure as per (3.9), we consider a data set on survival times from
a group of 97 female dementia patients diagnosed at age 70–74. This data set was originally from
Elandt-Johnson and Johnson (1999) and was recently discussed by Ozonur and Paul (2020) where
they showed that the two-parameter gamma distribution adequately fits the dementia data. One may
find the data set from Table 8 of Ozonur and Paul (2020).

According to the analysis by Xie et al. (2008), the estimated median survival time from onset of
dementia to death was 4.6 years for women. Thus, it will be very helpful to know the probability of
living exceeding the median time. We first randomly ordered dementia data and assuming that the
data came in with that order. Then, we set γ = 0.05, d = 1.6, c = 4.6, m = 5. That is, we took the
first five data points for initial analysis, and found that the stopping rule as per (3.9) was not satisfied.
Thus, we continued our sampling one-at-a-time according to (3.9). The sampling was terminated after
collecting the data from 71 patients, and the final data we collected are listed in Table 5.

In the end, using the final observations from Table 5, we were able to get a 95% confidence interval
estimation for p = Pα,β(X > 4.6) to be (0.3263, 0.5535), where X denotes the survival time for a
female dementia patient. Thus, using the data we obtained, we would conclude with 95% confidence
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Table 5: Final sample data of survival time (in years) for female dementia patients using P2 from (3.9)

6.75 1.59 0.50 0.50 4.17 3.58 8.16 2.33 1.67 10.17 3.75 1.83
21.00 1.00 1.83 0.50 1.66 1.42 1.67 9.33 4.08 18.08 1.00 7.84
2.67 1.58 1.67 7.83 9.17 1.42 2.00 12.50 4.92 21.83 0.58 1.67
1.25 11.25 4.67 5.25 2.17 3.92 13.83 5.83 0.83 4.17 1.25 3.42
8.50 11.50 10.33 5.25 1.08 3.42 11.25 5.75 2.00 5.58 0.83 1.08
6.92 4.58 7.00 4.92 7.83 2.92 7.84 2.25 3.08 9.92 6.58

that there is a 32.63% to 55.36% chance that women aged 70–74 can live more than 4.6 years from
the onset of dementia.

5. Concluding thoughts

Survival and reliability analysis are two of the most important scientific fields where the gamma dis-
tribution is often used to model data. And in these two fields, it is crucial to understand when the
measurement, the random variable that is modeled using a gamma distribution, goes beyond a “dan-
gerous” value. Therefore, in the paper, we focus on estimating P(X > c) from a two-parameter gamma
population with an unknown rate parameter, and the shape parameter is either known or unknown. In
cases of the known shape parameter, such as a sample from an exponential population, we provide
an estimation strategy along with a purely sequential procedure for determining the necessary sample
size of required accuracy. When the shape parameter is unknown, we come up with a nonparametric
purely sequential procedure for achieving the prefixed accuracy. Both procedures perform well in
terms of asymptotic efficiency and asymptotic consistency.

Finally, it is also worth mentioning that the nonparametric sequential fixed-accuracy confidence
interval estimation procedure developed in Section 3 can be further extended to estimate P(X > c) in a
general distribution-free case, since the idea does not depend on any specific population distribution.
The gamma population with unknown shape parameter α and unknown rate parameter β can be viewed
as an illustration.
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