DOI QR코드

DOI QR Code

Upregulation of Kruppel-like Factor 4 Gene expression by Allomyrina dichotoma Hemolymph in the INS-1 Pancreatic β-cells

  • Kwon, Kisang (Department of Anatomy & Cell Biology, College of Medicine, Chungnam National University) ;
  • Suh, Hyun-Woo (Department of Anatomy & Cell Biology, College of Medicine, Chungnam National University) ;
  • Kim, Hong Geun (Research Center for Endangered Species, National Institute of Ecology) ;
  • Kwon, O-Yu (Department of Anatomy & Cell Biology, College of Medicine, Chungnam National University)
  • Received : 2020.03.11
  • Accepted : 2020.03.26
  • Published : 2020.03.31

Abstract

The hemolymph of Korean rhinoceros Allomyrina dichotoma consists of blood and lymph in which various kinds of proteins function physiologically. We have previously demonstrated that A. dichotoma hemolymph has the potential to treatment and prevent diabetes through activating transcription factor 3-gene (ATF3) regulation. In this study, we investigate the expression of Kruppel-like factor 4 (KLF4) in A. dichotoma hemolymph-treated INS-1 pancreatic β-cells. The new findings show that A. dichotoma hemolymph, which upregulates KLF4 gene expression in a dose-dependent and time-dependent manner. In addition, hemolymph combine with mild endoplasmic reticulum (ER) stress, which also differentially regulates KLF4 gene expression. These results may provide insights to KLF4 gene-related disease therapies through KLF4 gene regulation.

Keywords

References

  1. Ahn MY, Han JW, Hwang JS, Yun EY, Lee BM. Antiinflammatory effect of glycosaminoglycan derived from Gryllus bimaculatus on adjuvant-treated chronic arthritis rat model. J Toxicol Environ Health Part A. 2014. 7: 1332-1345.
  2. Baiceanu A, Mesdom P, Lagouge M, Foufelle F. Endoplasmic reticulum proteostasis in hepatic steatosis. Nat Rev Endocrinol. 2016. 124: 710-722.
  3. Blow F, Douglas AE. The hemolymph microbiome of insects. J Insect Physiol. 2019. 115: 33-39. https://doi.org/10.1016/j.jinsphys.2019.04.002
  4. Choi YH, Lee KY, Yang KM, Jeong YM, Seo JS. Effect of larva extract of Allomyrina dichotoma on carbon tetrachlorideinduced hepatotoxicity in mice. Prev Nutr Food Sci. 2006. 35: 1349-1355.
  5. Chung MY, Yoon YI, Hwang JS, Goo TW, Yun EY. Anti-obesity effect of Allomyrina dichotoma (Arthropoda: Insecta) larvae ethanol extract on 3T3-L1 adipocyte differentiation. Entomol Res. 2014. 44: 9-16. https://doi.org/10.1111/1748-5967.12044
  6. Im AR, Yang WK, Park YC, Kim TH, Ahn HY, Kim YW, Sim SY, Seo KI, Cho YS. Biological activity and biochemical properties of water extracts from Bacillus subtilis-fermented silkworm (Bombyx mori L.) powder by origin. J Life Sci. 2017. 27: 1470-1478. https://doi.org/10.5352/JLS.2017.27.12.1470
  7. Kim DS, Huh J, You GC, Chae SC, Lee OS, Lee HB, Lee JB, Kim JS. Allomyrina dichotoma larva extracts protect streptozotocininduced oxidative cytotoxicity. Environ Health Toxicol. 2007. 22: 349-355.
  8. Kim HG, Kwon K, Suh HW, Lee S, Park KH, Kwon OY, Choi JY. Exosome isolation from hemolymph of Korean rhinoceros beetle, Allomyrina dichotoma (Coleoptera: Scarabaeidae). Entomol Res. 2015. 45: 339-344. https://doi.org/10.1111/1748-5967.12140
  9. Kim J, Yun EY, Park SW, Goo TW, Seo M. Allomyrina dichotoma larvae regulate food intake and body weight in high fat dietinduced obese mice through mTOR and Mapk signaling pathways. Nutrients. 2016. 8: 100. https://doi.org/10.3390/nu8020100
  10. Kim SH, Chae S. Hepatoprotective effects of insect extracts in an animal model of nonalcoholic fatty liver disease. Nutrients. 2018. 10: pii: E735.
  11. Kim SW, Suh HW, Yoo BK, Kwon K, Yu K, Choi JY, Kwon OY. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic ${\beta}$-cells. Z Naturforsch. C 2018. 73: 391-396. https://doi.org/10.1515/znc-2018-0019
  12. Kwon OY, Park S, Lee W, You KH, Kim H, Shong M. TSH regulates a gene expression encoding ERp29, an endoplasmic reticulum stress protein, in the thyrocytes of FRTL-5 cells. FEBS Lett. 2000. 475: 27-30. https://doi.org/10.1016/S0014-5793(00)01617-3
  13. Lee J, Hwang IH, Kim JH, Kim MA, Hwang JS, Kim YH, Na M. Quinoxaline-, dopamine-, and amino acid-derived metabolites from the edible insect Protaetia brevitarsis seulensis. Arch Pharm Res. 2017a. 40: 1064-1070. https://doi.org/10.1007/s12272-017-0942-x
  14. Lee J, Lee W, Kim MA, Hwang JS, Na M, Bae JS. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe). J Cell Mol Med. 2017b. 21: 1217-1227. https://doi.org/10.1111/jcmm.13055
  15. Lu XJ, Shi Y, Chen JL, Ma S. Kruppel-like factors in hepatocellular carcinoma. Tumour Biol. 2015. 36: 533-541. https://doi.org/10.1007/s13277-015-3127-6
  16. McCaffrey K, Braakman I. Protein quality control at the endoplasmic reticulum. Essays Biochm. 2016: 60: 227-235. https://doi.org/10.1042/EBC20160003
  17. Miyanoshita A, Hara S, Sugiyama M, Asaoka A, Taniai K, Yukuhiro F, Yamakawa M. Isolation and characterization of a new member of the insect defensing family from a beetle, Allomyrina dichotoma. Biosci Biotechnol Res Commun. 1996. 220: 526-531.
  18. Morales-Martinez M, Valencia-Hipolito A, Vega GG, Neri N, Nambo MJ, Alvarado I, Cuadra I, Duran-Padilla MA, Martinez-Maza O, Huerta-Yepez S, Vega MI. Regulation of Kruppel-Like Factor 4 (KLF4) expression through the transcription factor Yin-Yang 1 (YY1) in non-Hodgkin B-cell lymphoma. Oncotarget. 2019. 10: 2173. https://doi.org/10.18632/oncotarget.26745
  19. Nowak V, Persijn D, Rittenschober D, Charrondiere UR. Review of food composition data for edible insects. Food Chem. 2016. 193: 39-46. https://doi.org/10.1016/j.foodchem.2014.10.114
  20. Pendar H, Aviles J, Adjerid K, Schoenewald C, Socha JJ. Functional ompartmentalization in the hemocoel of insects. Sci Rep. 2019. 9: 6075. https://doi.org/10.1038/s41598-019-42504-3
  21. Sagisaka A, Miyanoshita A, Ishibashi J, Yamakawa M. Purification, characterization and gene expression of a glycine and prolinerich antibacterial protein family from larvae of a beetle, Allomyrina dichotoma. Insect Mol Biol. 2001. 10: 293-302. https://doi.org/10.1046/j.0962-1075.2001.00261.x
  22. Tang RZ, Zhu JJ, Yang FF, Zhang YP, Xie SA, Liu YF, Yao WJ, Pang W, Han LL, Kong W, Wang YX. DNA methyltransferase 1 and Kruppel-like factor 4 axis regulates macrophage inflammation and atherosclerosis. J Mol Cell Cardiol. 2019. 128: 11-24. https://doi.org/10.1016/j.yjmcc.2019.01.009
  23. Tao J, Li YO. Edible insects as a means to address global malnutrition and food insecurity issues. Food Qual Saf. 2018. 2: 17-26. https://doi.org/10.1093/fqsafe/fyy001
  24. van Huis A. Potential of insects as food and feed in assuring food security. Annu Rev Entomol. 2013. 58: 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
  25. Yoshida T, Hayashi M. Role of Kruppel-like factor 4 and its binding proteins in vascular disease. J Atheroscler Thromb. 2014. 21: 402-413. https://doi.org/10.5551/jat.23044
  26. Yoshikawa K, Umetsu K, Shinzawa H, Yuasa I, Maruyama K, Ohkura T, Yamashita K, Suzuki T. Determination of carbohydrate deficient transferring separated by lectin affinity chromatography for detecting chronic abuse. FEBS Lett. 1999. 458: 112-116. https://doi.org/10.1016/S0014-5793(99)01137-0