DOI QR코드

DOI QR Code

Simulation of Shingled String Characteristics Depending on Cell Strips Type for High Power Photovoltaic Modules

고출력 태양광 모듈을 위한 분할 셀 종류에 따른 슁글드 스트링 특성 시뮬레이션

  • Park, Ji Su (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Oh, Won Je (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Jae Hyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 박지수 (성균관대학교 전자전기컴퓨터공학과) ;
  • 오원제 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • Received : 2019.07.28
  • Accepted : 2019.09.18
  • Published : 2020.01.01

Abstract

Recently, with the increase in the use of urban solar power, solar modules are required to produce high power in limited areas. In this report, we proposed the fabrication of a high-power photovoltaic module using shingles technology, and developed accurate string characteristic simulations based on circuit modeling. By comparing the resistance components between the interconnected cells and the cell strips, the ECA resistance was determined to be 0.003 Ω. Based on the equivalent circuit of the modeled shingled string, string simulation was performed according to the type of cell strip. As a result, it was determined that the cell efficiency of the 4-cell strip was the highest at 19.66%, but the efficiency of the string simulated with the 6-cell strip was the highest at 20.48% in the string unit.

Keywords

References

  1. The Export-Import Bank of Korea, Photovoltaic Industry Report for the First Quarter of 2019 (EXIM Bank, Seoul, Korea, 2019).
  2. The Export-Import Bank of Korea, Photovoltaic Industry Trends for the Fourth Quarter of 2018 Quarterly Report (EXIM Bank, Seoul, Korea, 2019).
  3. T. Meyer and J. Luther, Energy Convers. Manage., 45, 2639 (2004). [DOI: https://doi.org/10.1016/j.enconman.2003.12.023]
  4. A. G. Olabi, Energy, 136, 1 (2017). [DOI: https://doi.org/10.1016/j.energy.2017.07.054]
  5. J. J. Song, Y. S. Jeong, and S. H. Lee, J. Digital Convergence, 12, 243 (2014). [DOI: https://doi.org/10.14400/JDC.2014.12.3.243]
  6. A. W. Blakers, J. Appl. Phys., 71, 5237 (1992). [DOI: https://doi.org/10.1063/1.350580]
  7. N. Klasen, A. Mondon, A. Kraft, and U. Eitner, Proc. 7th Workshop on Metalization and Interconnection for Crystalline Silicon Solar Cells, 2017 (SSRN Electronic Journal, Konstanz, 2017) p. 1. [DOI: https://doi.org/10.2139/ssrn.3152478]
  8. W. J. Oh, J. S. Park, S. H. Hwang, S. H. Lee, C. H. Jeong, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 290 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.5.290]
  9. W. J. Oh, J. S. Park, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 267 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.4.267]
  10. G. Cibira and M. Koscova, Appl. Surf. Sci., 312, 74 (2014). [DOI: https://doi.org/10.1016/j.apsusc.2014.05.080]
  11. D.S.H. Chan and J.C.H. Phang, IEEE Trans. Electron Devices, 34, 286 (1987). [DOI: https://doi.org/10.1109/T-ED.1987.22920]
  12. J. S. Park, S. H. Hwang, W. J. Oh, S. H. Lee, C. H. Jeong, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 295 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.5.295]
  13. R. J. Handy, Solid State Electron., 10, 765 (1967). [DOI: https://doi.org/10.1016/0038-1101(67)90159-1]
  14. J. Wong, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, Tampa, USA, 2013) p. 933. [DOI: https://doi.org/10.1109/PVSC.2013.6744296]