DOI QR코드

DOI QR Code

Long-term Settlement Prediction of Railway Concrete Track Based on Recurrent Neural Network (RNN)

순환신경망을 활용한 콘크리트궤도의 장기 침하 거동 예측

  • 김준영 (한남대학교 스마트융합공학부) ;
  • 이수형 (한국철도기술연구원) ;
  • 최영태 (한국철도기술연구원) ;
  • 우상인 (한남대학교 토목환경공학전공)
  • Received : 2019.10.29
  • Accepted : 2020.03.03
  • Published : 2020.03.31

Abstract

The railway concrete track has been increasingly adopted for high-speed train such as KTX due to its high running stability, improved ride quality for the passengers, and low maintenance cost. However, excessive settlement of the railway concrete track has been monitored at embankment sections of the ◯◯ High-speed Line, resulting in the concerns on the safety of railway operation. In order to establish an effective maintenance plan for the concrete track railway exceeding the allowable residual settlement, it is essential to reasonably predict their long-term settlement behavior during the public period. In this study, we developed a model for predicting the long-term settlement behavior of concrete track using recurrent neural network (RNN) and examined the applicability of the developed model.

콘크리트궤도는 고속, 고밀도의 운행선로에서도 차량의 주행안정성이 높고, 이용승객에게 좋은 승차감을 제공할 수 있으며, 궤도 보수 비용을 대폭 절감시킬 수 있는 장점을 가지고 있어 고속선을 중심으로 점차 적용 구간이 늘어나고 있다. 하지만, ◯◯고속철도 토공 구간의 노반 침하로 기인된 콘크리트궤도의 2차적 침하가 발생하는 사례가 빈번히 발생하고 있어, 이로 인한 철도 운행의 안정성 문제가 대두되고 있다. 허용 잔류침하량을 초과하는 콘크리트궤도에 대한 효율적인 유지보수 방안 수립을 위해서는 공용 기간 중 발생하는 콘크리트궤도의 장기 침하 거동을 합리적으로 예측하는 것이 필수적이다. 따라서, 본 연구에서는 다양한 인공지능 기술 중 순환신경망을 활용하여 콘크리트궤도의 장기 침하 거동을 예측하는 모델을 개발하였다. 또한 기존 모델의 침하 예측 결과와 비교를 통해 개발된 모델의 적용 가능성을 모색하였다.

Keywords

References

  1. Asaoka, A. (1978), "Observational Procedure of Settlement Prediction", Soils and Foundations, Vol.18, No.4, pp.87-101. https://doi.org/10.3208/sandf1972.18.4_87
  2. Cha, Y. J., Choi, W., and Buyukozturk, O. (2017), "Deep Learningbased Crack Damage Detection Using Convolutional Neural Networks", Computer-Aided Civil and Infrastructure Engineering, Vol.32, No.5, pp.361-378. https://doi.org/10.1111/mice.12263
  3. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014), "Learning Phrase Representations Using RNN Encoder-decoder for Statistical Machine Translation", arXiv preprint arXiv:1406.1078.
  4. Chou, J. S., Tsai, C. F., Pham, A. D., and Lu, Y. H. (2014), "Machine Learning in Concrete Strength Simulations: Multi-nation Data Analytics", Construction and Building Materials, Vol.73, pp.771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054
  5. Dahlberg, T. (2001), "Some Railroad Settlement Models - a Critical Review", Proc. Institution of Mech. Enginrs, Part F: Journal of Rail and Rapid Transit, Vol.215, No.4, pp.289-300, DOI: 10.1016/j.soildyn.2008.07.001.
  6. Hochreiter, S. and Schmidhuber, J. (1997), "Long Short-term Memory", Neural computation, Vol.9, No.8, pp.1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  7. Korea Rail Network Authority (2013), Railway Design Standards (Roadbed).
  8. Soeung, S., Lee, S.H., Lee, S.J., Kim, B.J., and Yune, C.Y. (2018), "Causing Factors of Additional Settlement in High-Speed Railways in Korea", KSCE Journal of Civil Engineering, Vol.22, No.10, pp.3843-3851. https://doi.org/10.1007/s12205-018-1040-4
  9. Tan, T. S., Inoue, T., and Lee, S. L. (1991), "Hyperbolic Method for Consolidation Analysis", Journal of Geotechnical Engineering, Vol.117, No.11, pp.1723-1737. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:11(1723)
  10. Tzanakakis, K. (2013), The railway track and its long-term behavior: A handbook for a railway track of high quality, Springer Science & Business Media, Berlin, DOI: 10.1007/978-3-642-36051-0.