DOI QR코드

DOI QR Code

Empirical Analysis on Determinants of Air Pollution in China

중국의 대기오염 배출 결정요인에 대한 경험적 분석

  • Li, Dmitriy D. (Department of Economics, Chonnam National University) ;
  • Wang, Wen (Beijing Conference Management Institute) ;
  • Bae, Jeong Hwan (Department of Economics, Chonnam National University)
  • Received : 2019.12.04
  • Accepted : 2020.03.16
  • Published : 2020.03.31

Abstract

The rapid economic growth has brought tremendous pressure on the environment and caused severe air pollution in China. This study empirically examines causes of air pollution in China. Panel-corrected standard errors procedure (PCSE) was used to analyze major determinants of increasing or reducing emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) in 30 Chinese provinces. The estimation results show that SO2 emission is mitigated as per capita regional GDP increases, but the relation between emission of NOX and per capita regional GDP is found to have an inverse N-shaped curve, which implies that emission of NOX is ultimately expected to decline with economic growth. As for increasing factors of air pollutants, electricity consumption is a significant common source of SO2 and NOX emissions. Moreover, the results show that increment of coal consumption significantly affects emission of SO2 while increase of natural gas consumption reduce emission of SO2. On the other side, investment in energy industry, and investment on treatment of waste gases are determinants of mitigating emissions of SO2, but have no impact on NOX. Consumption of diesel, truck ratio and number of vehicles increase emission of NOX. Meanwhile, higher precipitation rate is a common determinant of mitigating emissions of SO2 and NOX. Policy implications are suggested in the conclusion.

중국의 급속한 경제성장은 환경에 커다란 부하를 초래하였고, 이를 통해 대기오염 문제도 심각해졌다. 본 연구는 중국의 대기오염 원인을 경험적으로 분석하였다. 표준오차 패널수정 추정기법(PCSE)을 이용하여 중국의 30개 성을 대상으로 아황산가스 및 질소산화물의 배출요인을 분석하였다. 아황산가스의 경우 일인당 실질소득이 증가할수록 배출 수준이 감소하고, 질소산화물은 일인당 실질소득과 역N자형의 관계에 있는 것으로 분석되었다. 소득 이외의 배출 요인으로 우선 전기소비량은 아황산가스나 질소산화물을 증가시키는 요인이었고, 석탄소비량은 아황산가스 배출을 증가시키는 반면에 천연가스 소비량은 아황산가스 배출을 감소시키는 요인으로 나타났다. 한편 에너지 산업에 대한 투자와 폐가스 처리에 대한 투자는 아황산가스 배출을 감소시키는 결정요인이지만 질소산화물 배출에 영향을 미치지 않는 것으로 나타났다. 한편 디젤 소비량, 트럭 비율 및 차량 수는 질소산화물 배출을 증가시키는 것으로 나타났다. 강수량의 증가도 아황산가스와 질소산화물의 배출을 감소시킨 요인이었다. 끝으로 본 연구의 정책적 시사점과 향후 연구방향을 제시하였다.

Keywords

References

  1. Alvarez-Herranz, A., D. Balsalobre-Lorente, M. Shahbaz, and J. Maria Cantos, "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Vol. 105, 2017, pp. 386-397. https://doi.org/10.1016/j.enpol.2017.03.009
  2. Beck, N. and J. N. Katz, "What to do (and not to do) with time series cross-section data," American Political Science Review, Vol. 89, 1995, pp. 634-647. https://doi.org/10.2307/2082979
  3. Brajer, V., R. W. Mead, and F. Xiao, "Searching for an environmental Kuznets curve in China's air pollution," China Economic Review, Vol. 22, No. 3, 2011, pp. 383-397. https://doi.org/10.1016/j.chieco.2011.05.001
  4. Farzin, Y. and C. Bond, "Democracy and environmental quality," Journal of Development Economics, Vol. 81, 2006, pp. 213-235. https://doi.org/10.1016/j.jdeveco.2005.04.003
  5. Greene, W. "Econometric analysis," Upper Saddle River, NJ: Prentice-Hall, 2000.
  6. Grossman, G. and A. Krueger, "Environmental impacts of a North American free trade agreement," National Bureau of Economic Research Working paper, 1991, No. 3914.
  7. Jalil, A. and S. Mahmud "Environmental Kuznets curve for $CO_2$ emissions: A cointegration analysis for China," Energy Policy, Vol. 37, No. 12, 2009, pp. 5167-5172. https://doi.org/10.1016/j.enpol.2009.07.044
  8. Jin, Y., H. Andersson, and S. Zhang, "Air pollution control policies in China: A retrospective and prospects," International Journal of Environmental Research and Public Health, Vol. 13, No. 12, 1219, 2016. pp. 1-22.
  9. Kayes, I., S. A. Shahriar, K. Hasan, M. Akhter, M. M. Kabir, and M. A. Salam, "The relationships between meteorological parameters and air pollutants in an urban environment," Global Journal of Environmental Science and Management, Vol. 5, No. 3, 2019, pp. 265-278.
  10. Klimont, Z., S. J. Smith, and J. Cofala, "The last decade of global anthropogenic sulfur dioxide:2000-2011 emissions," Environmental Research Letters, Vol. 8, No. 1, 2013, 014003, pp. 1-6.
  11. Manju, A., K. Kalaiselvi, V. Dhananjayan, M. Palanivel, G. S. Banupriya, M. H. Vidhya, and B. Ravichandran, "Spatio-seasonal variation in ambient air pollutants and influence of meteorological factors in Coimbatore, Southern India," Air Qual. Atmos. Health., Vol. 11, No. 10, 2018, pp. 1179-1189. https://doi.org/10.1007/s11869-018-0617-x
  12. Moundigbaye, M., W. S. Rea, and W. R. Reed, "Which panel data estimator should I use?: A corrigendum and extension," Economics: The Open-Access, Open-Assessment E-Journal, Vol. 12, 2018, pp. 1-38.
  13. Nieuwenhuis, P. and A. McNabola, "Fact Check: are diesel cars really more polluting than petrol cars?," (2019, February 2). Retrieved from http://theconversation.com/fact-check-are-dieselcars-really-more-polluting-than-petrol-cars-76241.
  14. Parks, R. W. "Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated," Journal of the American Statistical Association, Vol. 62, 1967, pp. 500-509. https://doi.org/10.1080/01621459.1967.10482923
  15. Qu, B. and Y. Zhang, "Effect of income distribution on the Environmental Kuznets Curve," Pacific Economic Review, Vol. 16, 2011, pp. 349-370. https://doi.org/10.1111/j.1468-0106.2011.00552.x
  16. Song, W., Y. Li, Z. Hao, H. Li, and W. Wang, "Public health in China: An environmental and socio-economic perspective," Atmospheric Environment, Vol. 129, 2016, pp. 9-17. https://doi.org/10.1016/j.atmosenv.2015.12.021
  17. Torras, M. and J. Boyce, "Income, inequality, and pollution: a reassessment of the environmental Kuznets curve," Ecological Economics, Vol. 25, 1998, pp.147-160. https://doi.org/10.1016/S0921-8009(97)00177-8
  18. Venners, S. A., B. Wang, Z. Xu, Y. Schlatter, L. Wang, and X. Xu, "Particulate matter, sulfur dioxide, and daily mortality in Chongqing, China," Environmental Health Perspectives, Vol. 111, No. 4, 2003, pp. 562-567. https://doi.org/10.1289/ehp.5664
  19. Wang, J., Y. Ma, Y. Qiu, L. Liu, and Z. Dong, "Spatially differentiated effects of socioeconomic factors on Chinas NOX generation from energy consumption: implications for mitigation policy," Journal of Environmental Management, 250, 2019, 109417, pp. 1-13.
  20. Wang, S., D. Zhou, P. Zhou, and Q. Wang, "CO emissions, energy consumption and economic growth in China: a panel data analysis," Energy Policy, Vol. 39, 2011, pp. 4870-4875. https://doi.org/10.1016/j.enpol.2011.06.032
  21. Wang, Y., R. Han, and J. Kubota, "Is there an Environmental Kuznets Curve for SO 2 emissions? A semi-parametric panel data analysis for China" Renewable and Sustainable Energy Reviews, Vol. 54, 2016, pp. 1182-1188. https://doi.org/10.1016/j.rser.2015.10.143
  22. Wei, J., X. Guo, D. Marinova, and J. Fan, "Industrial $SO_2$ pollution and agricultural losses in China: evidence from heavy air polluters," Journal of Cleaner Production, Vol. 64, 2014, pp. 404-413. https://doi.org/10.1016/j.jclepro.2013.10.027
  23. Wooldridge, J. M. "Econometric Analysis of Cross Section and Panel Data." Cambridge, MA:MIT Press 2002.
  24. Wu, Li, Zhuang, Querol, Moreno, Li, ... Shangguan. "Mineralogical and Environmental Geochemistry of Coal Combustion Products from Shenhuo and Yihua Power Plants in Xinjiang Autonomous Region, Northwest China," Minerals, Vol. 9, No. 8, 2019, 496. https://doi.org/10.3390/min9080496
  25. Yaguchi, Y., T. Sonobe, and K. Otsuka, "Beyond the Environmental Kuznets Curve: A comparative study of $SO_2$ and $CO_2$ emissions between Japan and China," Environment and Development Economics, Vol. 12, 2007, pp. 445-470. https://doi.org/10.1017/S1355770X07003592
  26. Yang, H., J. He, and S. H. Chen, "The fragility of the Environmental Kuznets Curve: Revisiting the hypothesis with Chinese data via an "Extreme Bound Analysis"," Ecological Economics, Vol. 109, 2015, pp. 41-58. https://doi.org/10.1016/j.ecolecon.2014.10.023
  27. Zhang, D. and S. Paltsev, "The future of natural gas in China: Effects of pricing reform and climate policy," Climate Change Economics, Vol. 7, No. 4, 2016, pp. 11-80.
  28. Zhang, H., Y. Wang, J. Hu, Q. Ying, and X. M. Hu, "Relationships between meteorological parameters and criteria air pollutants in three megacities in China," Environmental Research, Vol. 140, 2015, pp. 242-254. https://doi.org/10.1016/j.envres.2015.04.004
  29. Zhao, B., S. X. Wang, H. Liu, J. Y. Xu, K. Fu, Z. Klimont, and M. Amann, "NOX emissions in China: historical trends and future perspectives," Atmospheric Chemistry and Physics, Vol. 13, No. 19, 2013, pp. 9869-9897. https://doi.org/10.5194/acp-13-9869-2013
  30. Zhao, J., Z. Zhao, and H. Zhang, "The impact of growth, energy and financial development on environmental pollution in China: New evidence from a spatial econometric analysis," Energy Economics, 2019. Available at: https://www.sciencedirect.com/science/article/pii/S0140988319302956.
  31. Zheng, Y., J. Peng, J. Xiao, P. Su, and S. Li, "Industrial structure transformation and provincial heterogeneity characteristics evolution of air pollution: Evidence of a threshold effect from China," Atmospheric Pollution Research, Vol. 11, No. 3, 2020, pp. 598-609. https://doi.org/10.1016/j.apr.2019.12.011