DOI QR코드

DOI QR Code

Optimization of Methane Yield in Anaerobic Digestion of Sewage Sludge with Microwave Pretreatment

극초단파 전처리를 적용한 하수슬러지 혐기성소화에서 메탄수율 최적화

  • Park, WoonJi (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lee, GwanJae (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lee, DongJun (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lee, SeoRo (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Choi, YuJin (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Hong, JiYeong (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Yang, DongSeok (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lim, KyoungJae (Department of Regional Infrastructure Engineering, Kangwon National University)
  • Received : 2019.11.26
  • Accepted : 2020.02.18
  • Published : 2020.03.31

Abstract

The objective of this study was to find an optimum methane yield condition in anaerobic digestion of sewage sludge with microwave pretreatment. The pretreatment process was carried out using a lab scale industrial microwave unit (2,450 MHz frequency). The digestion efficiency of pretreated sludge was evaluated by biochemical methane potential (BMP) test. Box-Behnken design and Response Surface Analysis (RSA) were applied to determine the optimal combination of sludge mixing ratio (0 to 100%), power (400 to 1600 W), holding time (0 to 10 min) and pretreatment temperature (60 to 100℃). BMP test results showed that Volatile Solid (VS) removal efficiency was up to 48% at a condition of 0% for mixing ratio, 1600 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. Methane production was up to 832.3 mL/g VSremoved at a condition of 50% for mixing ratio, 1000 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. The results of the variance analysis (ANOVA) showed that the p-value of the power and pretreatment temperature among the independent variables were significant (p<0.05), and in particular, the pretreatment temperature significantly affected on the solubilization and methane production. The optimum condition for the maximum methane yield (847 mL/g VSremoved) was consist of 38.4% of mixing ratio, 909.1 W of power, 4.1 min of holding time, and 80℃ of temperature within the design boundaries.

Keywords

References

  1. APHA, AWWA and WEF, 2017. Standard methods for the examination of water and wasterwater, 23rd ed., American Public Health Association, Washington, D.C., USA.
  2. Apul, O. G., and F. D. Sanin, 2010. Ultrasonic pretreatment and subsequent anaerobic digestion under different operational conditions. Bioresource Technology 101: 8984-8992. doi:10.1016/j.biortech.2010.06.128.
  3. Baik, S. J., I. S. Han, I. H. Choi, S. H. Kang, and S. M. Hong, 2014. Research on composting of sewage sludge using dryer facility with indirect heating system. Journal of Korean Society of Water and Wastewater 28(3): 299-304. doi:10.11001/jksww.2014.28.3.299.
  4. Cho, I. H., I. B. Ko, and J. T. Kim, 2014. Technology trend on the increase of biogas production and sludge reduction in wastewater treatment plants: Sludge pre-treatment techniques. Korean Chemical Engineering Research 52(4):413-424. doi:10.9713/kcer.2014.52.4.413.
  5. Cho, K. M., and S. E. Oh, 2018. Performance and microbial community evaluation of pilot scale combined with thermophilic and mesophilic of anaerobic digester for sewage sludge. Journal of the Korean Society of Urban Environment 18(2): 209-215. doi:10.33768/ksue.2018.18.2.209.
  6. Choi, K. K., S. J. Kim, T. J. Lee, D. W. Park, and W. K. Lee, 2006. Characteristics of biological hydrogen production from sewage sludge treated by optimal solubilization technology. Korean Journal of Biotechnology and Bioengineering 21(5): 353-359.
  7. Choi, J. H., S. Y. Jeong, and J. T. Kim, 2019. Evaluation of physical shear pre-treatment and biogas characteristics using mixed sludge. Journal of Korean Society on Water Environment 35(4): 362-369. doi:10.15681/KSWE.2019.35.4.362.
  8. Eskicioglu, C., N. Terzian, J. K. Kennedy, L. R. Droste, and M. Hamoda, 2007a. Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Research 41(11): 2457-2466. doi:10.1016/j.watres.2007.03.008.
  9. Eskicioglu, C., J. K. Kennedy, and L. R. Droste, 2007b. Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environment Research 79(11): 2304-2317. doi:10.2175/106143007X184069.
  10. Garud, S., I. Karimi, and M. Kraft, 2017. Design of computer experiments: A review. Computers & Chemical Engineering 106: 71-95. doi:10.1016/j.compchemeng.2017.05.010.
  11. Henson, T. L., J. E. Schmidt, I. Angelidaki, E. Marca, J. I. C. Jensen, H. Mosbak, and T. H. Christensen, 2004. Method for determination of methane potentials of solid organic waste. Waste Management 24(4): 393-400. doi:10.1016/j.wasman.2003.09.009.
  12. Jeon, Y. U., H. N. Choi, Y. J. Chung, and S. M. Hong, 2003. Pulse power pretreatment of waste activated sludge. Journal of Korean Society of Environmental Engineers 25(7): 875-882.
  13. Jones, D. A., T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman, and N. J. Miles, 2002. Microwave heating applications in environmental engineering-a review. Resources, Conservation and Recycling 34(2): 75-90. doi:10.1016/S0921-3449(01)00088-X.
  14. Khayum, N., S. Anbarasu, and S. Murugan, 2018. Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure. Energy 165:760-768. doi:10.1016/j.energy.2018.09.163.
  15. Lee, S. M., 2008. Optimal solubilization of waste activated sludge by microwave pre-treatment. Master's Thesis, Department of Environmental Engineering, Kangwon National University, Chuncheon, Korea.
  16. Lee, S. B., H. S. Jang, and B. H. Yoo, 2018. Preparation of waste cooking oil-based biodiesel using microwave energy: Optimization by Box-Behnken design model. Applied Chemistry for Engineering 29(6): 746-752. doi:10.14478/ace.2018.1083.
  17. Lee, C. Y., and S. K. Han, 2019. Effect of substrates on the microbial communities in a microbial electrolysis cell and anaerobic digestion coupled system. Transctions of Korean Hydrogen and New Energy Society 30(3): 269-275. doi:10.7316/KHNES.2019.30.3.269.
  18. Li, H., Y. Jin, and Y. Nie, 2009. Application of alkaline treatment for sludge decrement and humic acid recovery. Bioresource Technology 100(24): 6278-6283. doi:10.1016/j.biortech.2009.07.022.
  19. Ministry of Environment, 2007. Development of pretreatment and reduction technology of sludge using microwave.
  20. Ministry of Environment, 2017. Sewage statistics.
  21. Myers, R. H., and D. C. Montgomery, 2002. Response surface methodology: Process and product optimization using designed experiments, 2nd ed. John Wiley and Sons, Inc, New York.
  22. Owen, W. F., D. C. Stuckey, J. B. Healy, L. Y. Young, and P. L. McCarty, 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research 13(6): 485-492. doi:10.1016/0043-1354(79)90043-5.
  23. Park, B. C., 2007. Effect of microwave irradiation on disintegration of municipal secondary sludge for enhancement of anaerobic digestibility. Doctoral dissertation, Department of Environmental Science and Engineering, Pohang University of Science & Technology, Korea.
  24. Park, J. K., I. H. Kim, Y. M. Ahn, S. Higuchi, and N. H. Lee, 2012. Assessment of dynamic kinetics and synergistic effect for anaerobic co-digestion of sewage sludge. Journal of Korea Society of Waste Management 29(7): 624-633.
  25. Park, W. J., J. H. Ahn, and C. K. Lee, 2009. Effect of temperature-increase rate and terminal temperature on the solubilization of sewage sludge using microwave irradiation. Environmental Engineering Research 14(1):48-52. doi:10.4491/eer.2009.14.1.048.
  26. Park, W. J., and J. H. Ahn, 2011. Effects of microwave pretreatment on mesophilic anaerobic digestion for mixture of primary and secondary sludges compared with thermal pretreatment. Environmental Engineering Research 16(2):103-109. doi:10.4491/eer.2011.16.2.103.
  27. Tang, B., L. Yu, S. Huang, J. Luo, and Y. Zhuo, 2010. Energy efficiency of pre-treating excess sewage sludge with microwave irradiation. Bioresource Technology 101(14):5092-5097. doi:10.1016/j.biortech.2010.01.132.
  28. Teeradej, N., 2002. Effect of sludge pretreatment by microwave on anaerobic digestion. Master's Thesis, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, USA.
  29. Toyota, H., T. Asai, and N. Oku, 2017. Process optimization by use of design of experiments: Application for liposomalization of FK506. European Journal of Pharmaceutical Sciences 102: 196-202. doi:10.1016/j.ejps.2017.03.007.
  30. Vlyssides, A. G., and P. K. Karlis, 2004. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresource Technology 91(2):201-203. doi:10.1016/S0960-8524(03)00176-7.
  31. Wang, S., F. Chen, J. Wu, Z. Wang, X. Liao, and X. Hu, 2007. Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. Journal of Food Engineering 78(2): 693-700. doi:10.1016/j.jfoodeng..2005.11.008.
  32. Yoon, Y. S., J. G. Kang, J. I. Son, K. H. Kim, and S. Y. Lee, 2015. Possibility study of anaerobic co-digestion on beverage wastewater sludge and food waste leachate. Journal of Korean Society of Waste Management 32(4):357-367. doi:10.9786/kswm.2015.32.4.357.