DOI QR코드

DOI QR Code

Simultaneous Determination of the Flavonoids and Limonoids in Citrus junos Seed Shells Using a UPLC-DAD-ESI/MS

  • Jo, Ara (College of Pharmacy, Sunchon National University) ;
  • Shin, Ji hun (College of Pharmacy, Sunchon National University) ;
  • Song, Hwa young (College of Pharmacy, Sunchon National University) ;
  • Lee, Ye Eun (College of Pharmacy, Sunchon National University) ;
  • Jeong, Da Eun (College of Pharmacy, Sunchon National University) ;
  • Oh, Sung Hwa (Nano Bio Research Center, JBF) ;
  • Mun, Myung Jae (Nano Bio Research Center, JBF) ;
  • Lee, Mina (College of Pharmacy, Sunchon National University)
  • Received : 2019.10.29
  • Accepted : 2019.12.21
  • Published : 2020.03.31

Abstract

Citrus junos seeds (CS) have been traditionally used for the treatment of cancer and neuralgia. They are also used to manufacture edible oil and cosmetic perfume. A large amount of CS shells without oil (CSS) are discarded after the oil in CS is used as foods or herbal remedy. To efficiently utilize CSS as a by-products, it needs to be studied through chemical analysis. Therefore, we developed an ultra-performance liquid chromatography (UPLC)-diode array detection (DAD) method for simultaneous determination and quantitative analysis of five components (two flavonoids and threes limonoids) in CSS. A Waters Acquity UPLC HSS T3 column C18 (2.1 × 100 mm, 1.8 ㎛) was used for this separation. It was maintained at 40 ℃. The mobile phase used for the analysis was distilled water and acetonitrile with gradient elution. To identify the quantity of the five components, a mass spectrometer (MS) with an electrospray ionization (ESI) source was used. The regression equation showed great linearity, with correlation coefficient ≥ 0.9912. Limits of detection (LOD) and limits of quantification (LOQ) of the five compounds were 0.09 - 0.13 and 0.26 - 0.38 ㎍/mL, respectively. Recoveries of extraction ranged from 97.45% to 101.91%. Relative standard deviation (RSD) values of intra- and inter-day precision were 0.06 - 1.15% and 0.19 - 0.25%, respectively. This UPLC-DAD method can be validated to simultaneously analyze quantities of marker flavonoids and limonoids in CSS.

Keywords

References

  1. Deyhim, F.; Garica, K.; Lopez, E.; Gonzalez, J.; Ino, S.; Garcia, M.; Patil, B. S. Nutrition, 2006, 22, 559-563. https://doi.org/10.1016/j.nut.2005.12.002
  2. Woo, K. S.; Jeong, J. Y.; Hwang, I. G.; Lee, Y. J.; Lee, Y. R.; Park, H. J.; Park, E. S.; Jeong, H. J. Korean Soc. Food Sci. Nutr. 2009, 38, 384-390. https://doi.org/10.3746/JKFN.2009.38.3.384
  3. Minamisawa, M.; Yoshida, S.; Uzawa, A. Food funct. 2014, 5, 330-336. https://doi.org/10.1039/c3fo60440c
  4. Jayaprakasha, G. K.; Dandekar, D. V.; Tichy, S. E.; Patil, B. S. J. Sep. Sci. 2011, 34, 2-10. https://doi.org/10.1002/jssc.201000644
  5. Penido, C.; Costa, K. A.; Pennaforte, R. J.; Costa, M. F. S.; Pereira, J. F. G.; Siani, A. C.; Henriques, M. G. M. Inflammation Res. 2005, 54, 295-303. https://doi.org/10.1007/s00011-005-1357-6
  6. Kim, J.; Jayaprakasha, G. K.; Muthuchamy, M.; Patil, B. S. Eur. J. Pharmacol. 2011, 670, 44-49. https://doi.org/10.1016/j.ejphar.2011.08.035
  7. Li, W.; Jiang, Z.; Shen, L.; Pedpradab, P.; Bruhn, T.; Wu, J.; Bringmann, G. J. Nat. Prod. 2015, 78, 1570-1578. https://doi.org/10.1021/acs.jnatprod.5b00151
  8. Matsumoto, T.; Takahashi, K.; Kanayama, S.; Nakano, Y.; Imai, H.; Kibi, M.; Imahori, D.; Hasei, T.; Watanabe, T. J. Nat. Med. 2017, 71, 735-744. https://doi.org/10.1007/s11418-017-1108-3
  9. Hasegawa, S.; Miyake, M.; Ozaki, Y. ACS Symposium Series 1994, 546, 198-208.
  10. Miller, E. G.; Gonzales-Sanders, A. P.; Couvillon, A. M.; Wright, J. M.; Hasegawa, S.; Lam, L. K. 1992, 17, 1-7. https://doi.org/10.1080/01635589209514167
  11. Tanaka, T.; Kohno, H.; Tsukio, Y.; Honjo, S.; Tanino, M.; Miyake, M.; Wada, K. Biofactors 2000, 13, 213-218. https://doi.org/10.1002/biof.5520130133
  12. Benavente-Garcia, O.; Castillo, J.; Marin, F. R.; Ortuno, A.; Del Rio, J. A. J. Agric. Food Chem 1997, 45, 4505-4515. https://doi.org/10.1021/jf970373s
  13. Jung, U. J.; Kim, H. J.; Lee, J. S.; Lee, M. K.; Kim, H. O.; Park, E. J.; Kim, H. K.; Jeong, T. S.; Choi, M. S. Clin. Nutr. 2003, 22, 561-568. https://doi.org/10.1016/S0261-5614(03)00059-1
  14. Jung, U. J.; Lee, M.; Jeong, K.; Choi, M. J. Nutr. 2004, 134, 2499-2503. https://doi.org/10.1093/jn/134.10.2499
  15. Amaro, M. I.; Rocha, J.; Vila-Real, H.; Eduardo-Figueira, M.; Mota-Filipe, H. Sepodes, B.; Ribeiro, M. H. Food Res. Int. 2009, 42, 1010-1017. https://doi.org/10.1016/j.foodres.2009.04.016
  16. Bellocco, E.; Barreca, D.; Lagana, G.; Leuzzi, U.; Tellone, E.; Ficarra, S.; Kotyk A.; Galtieri, A. Mol. Cell. Biochem. 2009, 321, 165-171. https://doi.org/10.1007/s11010-008-9930-2
  17. Hwang, S.; Yen, G.; J. Agric. Food Chem. 2008, 56, 859-864. https://doi.org/10.1021/jf072826r
  18. Kim, J.; Jayaprakasha, G. K.; Vikram, A.; Patil, B. S. Toxicol. In Vitro 2012, 26, 1216-1223. https://doi.org/10.1016/j.tiv.2012.06.005
  19. Shimizu, S.; Miyamoto, S.; Fujii, G.; Nakanishi, R.; Onuma, W.; Ozaki, Y.; Fujimoto, K.; Yano, T.; Mutoh, M. J. Clin. Biochem. Nutr. 2015, 27, 39-43. https://doi.org/10.3164/jcbn.15-28
  20. Wisutsitthiwong, C.; Buranaruk, C.; Pudhom, K.; Palaga, T. Biochem. Biophys. Res. Commun. 2011, 415, 361-366. https://doi.org/10.1016/j.bbrc.2011.10.073
  21. Maltese, F.; Erkelens, C.; van der Kooy, F.; Choi, Y. H.; Verpoorte, R. Food Chem. 2009, 116, 575-579. https://doi.org/10.1016/j.foodchem.2009.03.023
  22. Dandekar, D. V.; Jayaprakasha, G. K.; Patil, B. S. Z. Naturforsch. C. J. Biosci. 2008, 63, 176-180. https://doi.org/10.1515/znc-2008-3-403
  23. Baber, N. Br. J. Clin. Pharmacol. 1994, 37, 401-404. https://doi.org/10.1111/j.1365-2125.1994.tb05705.x