DOI QR코드

DOI QR Code

Recent Findings on the Mechanism of Cisplatin-Induced Renal Cytotoxicity and Therapeutic Potential of Natural Compounds

  • Lee, Dahae (College of Korean Medicine, Gachon University) ;
  • Choi, Sungyoul (College of Korean Medicine, Gachon University) ;
  • Yamabe, Noriko (College of Korean Medicine, Gachon University) ;
  • Kim, Ki Hyun (School of Pharmacy, Sungkyunkwan University) ;
  • Kang, Ki Sung (College of Korean Medicine, Gachon University)
  • Received : 2019.10.16
  • Accepted : 2019.12.13
  • Published : 2020.03.31

Abstract

The efficacy and side effects associated with anticancer drugs have attracted an extensive research focus. Onconephrology is an evolving field of nephrology that deals with the study of kidney diseases in cancer patients. Most renal diseases in cancer patients are unique, and management of renal disease can be challenging especially in the presence of continuing use of the nephrotoxic drugs. Cisplatin is one of the most important chemotherapeutic agents used in the treatment of various malignancies, such as head, neck, ovarian, and cervical cancers. The major limitation in the clinical use of cisplatin is its tendency to induce adverse effects, such as nephrotoxicity. Recently, plant-derived phytochemicals have emerged as novel agents providing protection against cisplatin-induced renal cytotoxicity. Owing to the diversity of phytochemicals, they cover a wide spectrum of therapeutic indications in cancer and inflammation and have been a productive source of lead compounds for the development of novel medications. Of these agents, the effectiveness of triterpenoids, isolated from various medicinal plants, against cisplatin-induced renal cytotoxicity has been reported most frequently compared to other phytochemicals. Triterpenes are one of the most numerous and diverse groups of plant natural products. Triterpenes ameliorate cisplatin-induced renal damage through multiple pathways by inhibiting reactive oxygen species, inflammation, down-regulation of the MAPK, apoptosis, and NF-κB signaling pathways and upregulation of Nrf2-mediated antioxidant defense mechanisms. Here, we reviewed recent findings on the natural compounds with protective potential in cisplatin-induced renal cytotoxicity, provided an overview of the protective effects and mechanisms that have been identified to date, and discussed strategies to reduce renal cytotoxicity induced by anticancer drugs.

Keywords

References

  1. dos Santos, N. A.; Carvalho Rodrigues, M. A.; Martins, N. M.; dos Santos, A. C. Arch. Toxicol. 2012, 86, 1233-1250. https://doi.org/10.1007/s00204-012-0821-7
  2. Ojha, S.; Venkataraman, B.; Kurdi, A.; Mahgoub, E.; Sadek, B.; Rajesh, M. Oxid. Med. Cell. Longev. 2016, 2016, 4320374.
  3. Campbell, G. A.; Hu, D.; Okusa, M. D. Adv. Chronic Kidney Dis. 2014, 21, 64-71. https://doi.org/10.1053/j.ackd.2013.08.002
  4. Janus, N.; Thariat, J.; Boulanger, H.; Deray, G.; Launay-Vacher, V. Ann. Oncol. 2010, 21, 1395-1403. https://doi.org/10.1093/annonc/mdp598
  5. Oh, G. S.; Kim, H. J.; Shen, A.; Lee, S. B.; Khadka, D.; Pandit, A.; So, H. S. Electrolyte Blood Press. 2014, 12, 55-65. https://doi.org/10.5049/ebp.2014.12.2.55
  6. Volarevic, V.; Djokovic, B.; Jankovic, M. G.; Harrell, C. R.; Fellabaum, C.; Djonov, V.; Arsenijevic, N. J. Biomed. Sci. 2019, 26, 25. https://doi.org/10.1186/s12929-019-0518-9
  7. Miller, R. P.; Tadagavadi, R. K.; Ramesh, G.; Reeves, W. B. Toxins 2010, 2, 2490-2518. https://doi.org/10.3390/toxins2112490
  8. Peres, L. A. B.; de Cunha Jr, A. D. J. Bras. Nefrol. 2013, 35, 332-340. https://doi.org/10.5935/0101-2800.20130052
  9. Chirino, Y. I.; Pedraza-Chaverri, J. Exp. Toxicol. Pathol. 2009, 61, 223-242. https://doi.org/10.1016/j.etp.2008.09.003
  10. Glezerman, I. G.; Jaimes, E. A. Am. Soc. Nephrol[Internet]. 2016, 1-10.
  11. Manohar, S.; Leung, N. J. Nephrol. 2018, 31, 15-25. https://doi.org/10.1007/s40620-017-0392-z
  12. Perazella, M. A. Clin. J. Am. Soc. Nephrol. 2018, 13, 1897-1908. https://doi.org/10.2215/cjn.00150118
  13. Ciarimboli, G.; Deuster, D.; Knief, A.; Sperling, M.; Holtkamp, M.; Edemir, B.; Pavenstadt, H.; Lanvers-Kaminsky, C.; am Zehnhoff- Dinnesen, A.; Schinkel, A. H.; Koepsell, H.; Jurgens, H.; Schlatter, E. Am. J. Pathol. 2010, 176, 1169-1180. https://doi.org/10.2353/ajpath.2010.090610
  14. Sprowl, J. A.; Lancaster, C. S.; Pabla, N.; Hermann, E.; Kosloske, A. M.; Gibson, A. A.; Li, L.; Zeeh, D.; Schlatter, E.; Janke, L. J.; Ciarimboli, G.; Sparreboom, A. Clin. Cancer Res. 2014, 20, 4026-4035. https://doi.org/10.1158/1078-0432.CCR-14-0319
  15. Safirstein, R.; Winston, J.; Moel, D.; Dikman, S.; Guttenplan, J. Int. J. Androl. 1987, 10, 325-346. https://doi.org/10.1111/j.1365-2605.1987.tb00200.x
  16. Mendus, D. Doktorarbeit; Universitat Duisburg-Essen; Germany, 2017, pp 1-127.
  17. Yang, Y.; Liu, H.; Liu, F.; Dong, Z. Arch. Toxicol. 2014, 88, 1249-1256. https://doi.org/10.1007/s00204-014-1239-1
  18. Nimse, S. B.; Pal, D. RSC Adv. 2015, 5, 27986-28006. https://doi.org/10.1039/C4RA13315C
  19. Halliwell, B. Plant Physiol. 2006, 141, 312-322. https://doi.org/10.1104/pp.106.077073
  20. Benedetti, G.; Fredriksson, L.; Herpers, B.; Meerman, J.; van de Water, B.; de Graauw, M. Biochem. Pharmacol. 2013, 85, 274-286. https://doi.org/10.1016/j.bcp.2012.10.012
  21. Park, M. S.; De Leon, M.; Devarajan, P. J. Am. Soc. Nephrol. 2002, 13, 858-865. https://doi.org/10.1681/ASN.V134858
  22. Zhang, H.; Sun, S. C. Cell Biosci. 2015, 5, 63. https://doi.org/10.1186/s13578-015-0056-4
  23. Rodriguez-Garcia, M. E.; Quiroga, A. G.; Castro, J.; Ortiz, A.; Aller, P.; Mata, F. Toxicol. Sci. 2009, 111, 413-423. https://doi.org/10.1093/toxsci/kfp145
  24. Liu, M.; Grigoryev, D. N.; Crow, M. T.; Haas, M.; Yamamoto, M.; Reddy, S. P.; Rabb, H. Kidney Int. 2009, 76, 277-285. https://doi.org/10.1038/ki.2009.157
  25. Cassidy, H.; Radford, R.; Slyne, J.; O'Connell, S.; Slattery, C.; Ryan, M. P.; McMorrow, T. J. Signal Transduct. 2012, 2012, 463617. https://doi.org/10.1155/2012/463617
  26. Lu, Z.; Xu, S. IUBMB Life 2006, 58, 621-631. https://doi.org/10.1080/15216540600957438
  27. Ramesh, G.; Brian Reeves, W. Ren. fail. 2006, 28, 583-592. https://doi.org/10.1080/08860220600843839
  28. Ramesh, G.; Reeves, W. B. Am. J. Physiol. Renal Physiol. 2005, 289, F166-F174. https://doi.org/10.1152/ajprenal.00401.2004
  29. Francescato, H. D.; Costa, R. S.; Junior, F. B.; Coimbra, T. M. Nephrol. Dial. Transplant. 2007, 22, 2138-2148. https://doi.org/10.1093/ndt/gfm144
  30. Grynberg, K.; Ma, F. Y.; Nikolic-Paterson, D. J. Front. Physiol. 2017, 8, 829. https://doi.org/10.3389/fphys.2017.00829
  31. Tsuruya, K.; Ninomiya, T.; Tokumoto, M.; Hirakawa, M.; Masutani, K.; Taniguchi, M.; Fukuda, K.; Kanai, H.; Kishihara, K.; Hirakata, H.; Iida, M. Kidney Int. 2003, 63, 72-82. https://doi.org/10.1046/j.1523-1755.2003.00709.x
  32. Kim, Y. K.; Kim, H. J.; Kwon, C. H.; Kim, J. H.; Woo, J. S.; Jung, J. S.; Kim, J. M. J. Appl. Toxicol. 2005, 25, 374-382. https://doi.org/10.1002/jat.1081
  33. Sheikh-Hamad, D.; Cacini, W.; Buckley, A. R.; Isaac, J.; Truong, L. D.; Tsao, C. C.; Kishore, B. K. Arch. Toxicol. 2004, 78, 147-155. https://doi.org/10.1007/s00204-003-0521-4
  34. Sahu, B. D.; Kumar, J. M.; Sistla, R. PLoS one. 2015, 10, e0134139. https://doi.org/10.1371/journal.pone.0134139
  35. Sanz, A. B.; Sanchez-Nino, M. D.; Ramos, A. M.; Moreno, J. A.; Santamaria, B.; Ruiz-Ortega, M.; Egido, J.; Ortiz, A. J. Am. Soc. Nephrol. 2010, 21, 1254-1262. https://doi.org/10.1681/ASN.2010020218
  36. Zhang, W.; Hou, J.; Yan, X.; Leng, J.; Li, R.; Zhang, J.; Xing, J.; Chen, C.; Wang, Z.; Li, W. Nutrients 2018, 10, 1328. https://doi.org/10.3390/nu10091328
  37. Qin, X.; Meghana, K.; Sowjanya, N. L.; Sushma, K. R.; Krishna, C. G.; Manasa, J.; Sita, G. J. A.; Gowthami, M.; Honeyshmitha, D.; Srikanth, G. SreeHarsha, N. BioFactors 2019, 45, 471-478. https://doi.org/10.1002/biof.1502
  38. Tak, P. P.; Firestein, G. S. J. Clin. Invest. 2001, 107, 7-11. https://doi.org/10.1172/JCI11830
  39. Alhoshani, A. R.; Hafez, M. M.; Husain, S.; Al-sheikh, A. M.; Alotaibi, M. R.; Al Rejaie, S. S.; Alshammari, M. A.; Almutairi, M. M.; Al-Shabanah, O. A. BMC Nephrol. 2017, 18, 194. https://doi.org/10.1186/s12882-017-0601-y
  40. Topcu-Tarladacalisir, Y.; Sapmaz-Metin, M.; Karaca, T. Ren. fail. 2016, 38, 1741-1748. https://doi.org/10.1080/0886022X.2016.1229996
  41. Pabla, N.; Dong, Z. Kidney Int. 2008, 73, 994-1007. https://doi.org/10.1038/sj.ki.5002786
  42. Jaiman, S.; Sharma, A. K.; Singh, K.; Khanna, D. Eur. J. Clin. Pharmacol. 2013, 69, 1863-1874. https://doi.org/10.1007/s00228-013-1568-7
  43. Lau, A. H. Kidney Int. 1999, 56, 1295-1298. https://doi.org/10.1046/j.1523-1755.1999.00687.x
  44. Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Am. J. Med. Sci. 2007, 334, 115-124. https://doi.org/10.1097/MAJ.0b013e31812dfe1e
  45. Kandimalla, R.; Dash, S.; Kalita, S.; Choudhury, B.; Malampati, S.; Kalita, K.; Kalita, B.; Devi, R.; Kotoky, J. Front. Pharmacol. 2016, 7, 298.
  46. Kaushal, G. P.; Kaushal, V.; Hong, X.; Shah, S. V. Kidney int. 2001, 60, 1726-1736. https://doi.org/10.1046/j.1523-1755.2001.00026.x
  47. Mostafa, R. E.; Saleh, D. O.; Mansour, D. F. J. Appl. Pharm. Sci. 2018, 8, 043-050. https://doi.org/10.7324/JAPS.2018.8708
  48. Cummings, B. S.; Schnellmann, R. G. J. Pharmacol. Exp. Ther. 2002, 302, 8-17. https://doi.org/10.1124/jpet.302.1.8
  49. Agraharkar, M.; Nerenstone, S.; Palmisano, J.; Kaplan, A. A. Am. J. Kidney Dis. 1998, 32, e5.1-e5.4. https://doi.org/10.1016/S0272-6386(98)70152-0
  50. Ding, D.; Allman, B. L.; Salvi, R. Anat. Rec(Hoboken). 2012, 295, 1851-1867. https://doi.org/10.1002/ar.22577
  51. Crona, D. J.; Faso, A.; Nishijima, T. F.; McGraw, K. A.; Galsky, M. D.; Milowsky, M. I. Oncologist 2017, 22, 609-619. https://doi.org/10.1634/theoncologist.2016-0319
  52. Santoso, J. T.; Lucci 3rd, J. A.; Coleman, R. L.; Schafer, I.; Hannigan, E. V. Cancer Chemother. Pharmacol. 2003, 52, 13-18. https://doi.org/10.1007/s00280-003-0620-1
  53. Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F. Chem. Res. Toxicol. 2019, 32, 1469-1486. https://doi.org/10.1021/acs.chemrestox.9b00204
  54. Yuan, H.; Ma, Q.; Ye, L.; Piao, G. Molecules 2016, 21, 559. https://doi.org/10.3390/molecules21050559
  55. Harvey, A. L. Drug Discov. Today 2008, 13, 894-901. https://doi.org/10.1016/j.drudis.2008.07.004
  56. Hong, J. Curr. Opin. Chem. Biol. 2011, 15, 350-354. https://doi.org/10.1016/j.cbpa.2011.03.004
  57. Cheuka, P. M.; Mayoka, G.; Mutai, P.; Chibale, K. Molecules 2016, 22, 58. https://doi.org/10.3390/molecules22010058
  58. Li, F.; Wang, Y.; Li, D.; Chen, Y.; Dou, Q. P. Expert. Opin. Drug Discov. 2019, 14, 417-420. https://doi.org/10.1080/17460441.2019.1582639
  59. Beutler, J. A. Curr. Protoc. Pharmacol. 2009, 46, 9.11.1-9.11.21. https://doi.org/10.1002/0471141755.ph0911s46
  60. Kanase, H. R.; Singh, K. N. M. Am. J. Med. Sci. 2018, 38, 49-53. https://doi.org/10.4103/jmedsci.jmedsci_126_17
  61. Medina-Franco, J. L. Rev. Latinoamer. Quim. 2013, 41, 95-110.
  62. Lee, D.; Lee, S.; Shim, S. H.; Lee, H. J.; Choi, Y.; Jang, T. S.; Kim, K. H.; Kang, K. S. Bioorg. Med. Chem. Lett. 2017, 27, 2881-2885. https://doi.org/10.1016/j.bmcl.2017.04.084
  63. Lee, S. R.; Lee, D.; Lee, H. J.; Noh, H. J.; Jung, K.; Kang, K. S.; Kim, K. H. Bioorg. Chem. 2017, 71, 67-73. https://doi.org/10.1016/j.bioorg.2017.01.012
  64. Kang, H. R.; Lee, D.; Eom, H. J.; Lee, S. R.; Lee, K. R.; Kang, K. S.; Kim, K. H. J. Funct. Foods 2016, 20, 358-368. https://doi.org/10.1016/j.jff.2015.11.010
  65. Lee, S.; Jung, K.; Lee, D.; Lee, S. R.; Lee, K. R.; Kang, K. S.; Kim, K. H. Bioorg. Med. Chem. Lett. 2015, 25, 5613-5618. https://doi.org/10.1016/j.bmcl.2015.10.035
  66. Jung, K.; Lee, D.; Yu, J. S.; Namgung, H.; Kang, K. S.; Kim, K. H. Bioorg. Med. Chem. Lett. 2016, 26, 1466-1470. https://doi.org/10.1016/j.bmcl.2016.01.056
  67. Eom, H. J.; Lee, D.; Lee, S.; Noh, H. J.; Hyun, J. W.; Yi, P. H.; Kang, K. S.; Kim, K. H. J. Agric. Food Chem. 2016, 64, 7171-7178. https://doi.org/10.1021/acs.jafc.6b03465
  68. Lee, D.; Yu, J. S.; Lee, S. R.; Hwang, G. S.; Kang, K. S.; Park, J. G.; Kim, H. Y.; Kim, K. H.; Yamabe, N. Int. J. Mol. Sci. 2018, 19, 1117. https://doi.org/10.3390/ijms19041117
  69. Lee, D.; Kang, K. S.; Lee, H. J.; Kim, K. H. Int. J. Mol. Sci. 2018, 19, 174. https://doi.org/10.3390/ijms19010174
  70. Kang, H. R.; Lee, D.; Benndorf, R.; Jung, W. H.; Beemelmanns, C.; Kang, K. S.; Kim, K. H. J. Nat. Prod. 2016, 79, 3072-3078. https://doi.org/10.1021/acs.jnatprod.6b00738
  71. Sahin, K.; Tuzcu, M.; Gencoglu, H.; Dogukan, A.; Timurkan, M.; Sahin, N.; Aslan, A.; Kucuk, O. Life Sci. 2010, 87, 240-245. https://doi.org/10.1016/j.lfs.2010.06.014
  72. Ansari, M. A. Biomed. Pharmacother. 2017, 93, 646-653. https://doi.org/10.1016/j.biopha.2017.06.085
  73. Kilic, U.; Kilic, E.; Tuzcu, Z.; Tuzcu, M.; Ozercan, I. H.; Yilmaz, O.; Sahin, F.; Sahin, K. Nutr. Metab. 2013, 10, 7. https://doi.org/10.1186/1743-7075-10-7
  74. Prasaja, Y.; Sutandyo, N.; Andrajati, R. Asian Pac. J. Cancer Prev. 2015, 16, 1117-1122. https://doi.org/10.7314/APJCP.2015.16.3.1117
  75. Zhu, X.; Jiang, X.; Li, A.; Zhao, Z.; Li, S. Nutrients 2017, 9, 166. https://doi.org/10.3390/nu9020166
  76. Yu, X.; Meng, X.; Xu, M.; Zhang, X.; Zhang, Y.; Ding, G.; Huang, S.; Zhang, A.; Jia, Z. EBioMedicine 2018, 36, 266-280. https://doi.org/10.1016/j.ebiom.2018.09.031
  77. Yang, C.; Guo, Y.; Huang, T. S.; Zhao, J.; Huang, X. J.; Tang, H. X.; An, N.; Pan, Q.; Xu, Y. Z.; Liu, H. F. Biomed. Pharmacother. 2018, 107, 1354-1362. https://doi.org/10.1016/j.biopha.2018.08.126
  78. Wang, Z.; Li, Y. F.; Han, X. Y.; Sun, Y. S.; Zhang, L. X.; Liu, W.; Liu, X. X.; Li, W.; Liu, Y. Y. Cell. Physiol. Biochem. 2018, 48, 2219-2229. https://doi.org/10.1159/000492562
  79. So, H. M.; Eom, H. J.; Lee, D.; Kim, S.; Kang, K. S.; Lee, I. K.; Baek, K. H.; Park, J. Y.; Kim, K. H. Arch. Pharm. Res. 2018, 41, 815-822. https://doi.org/10.1007/s12272-018-1064-9
  80. Pompei, R.; Flore, O.; Marccialis, M. A.; Pani, A.; Loddo, B. Nature 1979, 281, 689-690. https://doi.org/10.1038/281689a0
  81. Ju, S.; Kim, M.; Jo, Y.; Jeon, Y.; Bae, J.; Pae, H.; Jeon, B. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 890-899.
  82. Sherif, I. O. J Clin. Exp. Nephrol. 2015, 19, 591-597. https://doi.org/10.1007/s10157-014-1056-0
  83. Elsherbiny, N. M.; Eladl, M. A.; Al-Gayyar, M. M. Cytokine 2016, 77, 26-34. https://doi.org/10.1016/j.cyto.2015.10.010
  84. Park, J. Y.; Choi, P.; Kim, T.; Ko, H.; Kim, H. K.; Kang, K. S.; Ham, J. J. Agric. Food Chem. 2015, 63, 5964-5969. https://doi.org/10.1021/acs.jafc.5b00782
  85. Ma, X.; Dang, C.; Kang, H.; Dai, Z.; Lin, S.; Guan, H.; Liu, X.; Wang, X.; Hui, W. Int. Immunopharmacol. 2015, 28, 399-408. https://doi.org/10.1016/j.intimp.2015.06.020
  86. Wang, H.; Kong, L.; Zhang, J.; Yu, G.; Lv, G.; Zhang, F.; Chen, X.; Tian, J.; Fu, F. Sci. Rep. 2014, 4, 4986. https://doi.org/10.1038/srep04986
  87. Sohn, S. I.; Rim, H. K.; Kim, Y. H.; Choi, J. H.; Park, J. H.; Park, H. J.; Choi, J. W.; Kim, S. D.; Jeong, S. Y.; Lee, K. T. Biol. Pharm. Bull. 2011, 34, 1508-1513. https://doi.org/10.1248/bpb.34.1508
  88. Kim, T. W.; Song, I. B.; Lee, H. K.; Lim, J. H.; Cho, E. S.; Son, H. Y.; Park, S. J.; Kim, J. W.; Yun, H. I. Food Chem. Toxicol. 2012, 50, 4254-4259. https://doi.org/10.1016/j.fct.2012.05.022
  89. Lee, C. K.; Park, K. K.; Chung, A. S.; Chung, W. Y. Food Chem. Toxicol. 2012, 50, 2565-2574. https://doi.org/10.1016/j.fct.2012.01.005
  90. Li, W.; Yan, M. H.; Liu, Y.; Liu, Z.; Wang, Z.; Chen, C.; Zhang, J.; Sun, Y. S. Nutrients 2016, 8, 566. https://doi.org/10.3390/nu8090566
  91. Baek, S. H.; Piao, X. L.; Lee, U. J.; Kim, H. Y.; Park, J. H. Biol. Pharm. Bull. 2006, 29, 2051-2055. https://doi.org/10.1248/bpb.29.2051
  92. Shirwaikar, A.; Setty, M.; Bommu, P. Indian J. Exp. Biol. 2004, 42, 686-690.
  93. He, L.; Zhang, Y.; Kang, N.; Wang, Y.; Zhang, Z.; Zha, Z.; Yang, S.; Xu, Q.; Liu, Y. Phytomedicine 2019, 56, 136-146. https://doi.org/10.1016/j.phymed.2018.10.035
  94. Xing, J. J.; Hou, J. G.; Ma, Z. N.; Wang, Z.; Ren, S.; Wang, Y. P.; Liu, W. C.; Chen, C.; Li, W. Cell Prolif. 2019, 52, e12627. https://doi.org/10.1111/cpr.12627
  95. Kim, J. H.; Jeong, S. J.; Kwon, H. Y.; Park, S. Y.; Lee, H. J.; Lee, H. J.; Lieske, J. C.; Kim, S. H. Biol. Pharm. Bull. 2010, 33, 1279-1284. https://doi.org/10.1248/bpb.33.1279
  96. Qi, Z. L.; Wang, Z.; Li, W.; Hou, J. G.; Liu, Y.; Li, X. D.; Li, H. P.; Wang, Y. P. Phytother. Res. 2017, 31, 1400-1409. https://doi.org/10.1002/ptr.5867
  97. Kang, L.; Zhao, H.; Chen, C.; Zhang, X.; Xu, M.; Duan, H. Int. Immunopharmacol. 2016, 38, 246-251. https://doi.org/10.1016/j.intimp.2016.05.019
  98. Zhang, Y.; Wang, Q.; Wang, Y.; Sun, B.; Leng, X.; Li, Q.; Ren, L. Hum. Exp. Toxicol. 2019, 38, 118-128. https://doi.org/10.1177/0960327118785233
  99. Lee, H.; Lee, D.; Kang, K. S.; Song, J. H.; Choi, Y. K. Int. J. Mol. Sci. 2018, 19, 813. https://doi.org/10.3390/ijms19030813
  100. Liu, Q.; Song, J.; Li, H.; Dong, L.; Dai, S. Int. J. Mol. Med. 2018, 41, 2108-2116.
  101. Horvath, B.; Mukhopadhyay, P.; Kechrid, M.; Patel, V.; Tanchian, G.; Wink, D. A.; Gertsch, J.; Pacher, P. Free Radic. Biol. Med. 2012, 52, 1325-1333. https://doi.org/10.1016/j.freeradbiomed.2012.01.014
  102. Kanehisa, M.; Goto, S. Nucleic Acids Res. 2000, 28, 27-30. https://doi.org/10.1093/nar/28.1.27