Abstract
With the development of deep learning, studies using artificial neural networks based on deep learning in recommendation systems are being actively conducted. Especially, the recommendation system based on RNN (Recurrent Neural Network) shows good performance because it considers the sequential characteristics of data. This study proposes a travel route recommendation system using GRU(Gated Recurrent Unit) and Session-based Parallel Mini-batch which are RNN-based algorithm. This study improved the recommendation performance through an ensemble of top1 and bpr(Bayesian personalized ranking) error functions. In addition, it was confirmed that the RNN-based recommendation system considering the sequential characteristics in the data makes a recommendation reflecting the meaning of the travel destination inherent in the travel route.
딥 러닝의 발전에 따라 추천시스템에서 딥 러닝 기반의 인공신경망을 활용한 연구가 활발히 진행되고 있다. 특히, RNN(Recurrent Neural Network)기반의 추천시스템은 데이터의 순차적 특성을 고려하기 때문에 추천시스템에서 좋은 성과를 보여주고 있다. 본 연구는 RNN기반의 알고리즘인 GRU(Gated Recurrent Unit)와 세션 기반 병렬 미니배치(Session Parallel mini-batch)기법을 활용한 여행경로 추천 시스템을 제안한다. 본 연구는 top1과 bpr(Bayesian personalized ranking) 오차함수의 앙상블을 통해 추천 성과를 향상시켰다. 또한, 데이터 내에 순차적인 특성을 고려한 RNN기반 추천 시스템은 여행경로에 내재된 여행지의 의미가 반영된 추천이 이루어진다는 것을 확인되었다.