참고문헌
- D. L. Ou and A. B. Seddon, "Near- and mid-infrared spectroscopy of sol-gel derived ormosils: vinyl and phenyl silicates", J. Non-Cryst. Solids., 187, 210 (1997).
- J. P. Vareda, P. Maximiano, L. P. Cunha, A. F. Ferreira, P. N. Simoes, and L. Duraes, "Effect of different types of surfactants on the microstructure of methyltrimethoxysilane-derived silica aerogels: A combined experimental and computational approach", J. Colloid and Interf. Sci., 64, 512 (2018).
- D. B. Mahadik, R. V. Lakshmi, and H. C. Barshilia, "High performance single layer nano porous antireflection coatings on glass by sol-gel process for solar energy applications", Sol. Energ. Mat. Sol. C., 61, 140 (2015).
- D. B. Mahadik, H. N. R. Jung, W. Han, H. H. Cho, and H. H. Park, "Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process", Compos. Sci. Technol., 45, 147 (2017).
- L. Ren, S. Cui, F. Cao, and Q. Guo, "An easy way to prepare monolithic inorganic oxide aerogels", Angew. Chem. Int. Ed., 10147, 53 (2014).
- J. E. Amonette and J. Matyas, "Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review", Micropor. Mesopor. Mat., 100, 250 (2017). https://doi.org/10.1016/j.micromeso.2006.11.010
- H. Maleki, "Recent advances in aerogels for environmental remediation applications: a review", Chem. Eng. J., 98, 300 (2016).
- W. Liu, A. K. Herrmann, D. Geiger, L. Borchardt, F. Simon, S. Kaskel, N. Gaponik, and A. Eychmuller, "High?performance electrocatalysis on palladium aerogels", Angew. Chem. Int. Ed., 5743, 51 (2012).
- S. Zhao, Z. Zhang, G. Sebe, R. Wu, R. V. Rivera Virtudazo, P. Tingaut, and M. M. Koebel, "Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization", Adv. Funct. Mater., 2326, 25 (2015).
- D. B. Mahadik, R. V. Lakshmi, and H. C. Barshilia, "High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications", Sol. Energ. Mat. Sol. C., 61, 140 (2015).
- G. Zu, J. Shen, W. Wang, L. Zou, Y. Lian, Z. Zhang, B. Liu, and F. Zhang, "Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts", Chem. Mater., 5761, 26 (2014).
- Q. Zheng, Z. Cai, and S. Gong, "Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents", J. Mater. Chem. A., 3110, 2 (2014).
- F. Jiang and Y. L. Hsieh, "Amphiphilic superabsorbent cellulose nanofibril aerogels", J. Mater. Chem. A., 6337, 2 (2014).
- K. Y. Lee, V. D. Phadtare, H. Choi, S. H. Moon, J. I. Kim, Y. K. Bae, and H. H. Park, "Chemically bonded thermally expandable microsphere-silica composite aerogel with thermal insulation property for industrial use", J. Microelectron. Packag. Soc., 26(2), 23 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.0023
- S. Shafi, R. Navik, X. Ding, and Y. P. Zhao, "Improved heat insulation and mechanical properties of silica aerogel/glassfiber composite by impregnating silica gel", J. Non-Cryst. Solids, 78, 503 (2019).
- Y. Kobayashi, T. Saito, and A. Isogai, "Aerogels with 3D ordered nanofiber skeletons of liquid?crystalline nanocellulose derivatives as tough and transparent insulators", Angew. Chem. Int. Ed., 10394, 53 (2014).
- S. Yun, H. Luo, and Y. Gao, "Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity", J. Mater. Chem. A., 14542, 2 (2014).
- R. P. Dhavale, V. G. Parale, T. Kim, H. Choi, Y. Kim, K. Y. Lee, H. N. R. Jung, and H. H. Park, "Enhancement in the Textural Properties and Hydrophobicity of Tetraethoxysilanebased Silica Aerogels by Phenyl Surface Modification", J. Microelectron. Packag. Soc., 27(2), 27 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.027
- V. G. Parale, T. Kim, K. Y. Lee, V. D. Phadtare, R. P. Dhavale, H. N. R. Jung, and H. H. Park, "Hydrophobic TiO2-SiO2-composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity", Ceram. Int., 4939, 46 (2020).
- H. Choi, V. G. Parale, T. Kim, Y. S. Kim, J. Tae, and H. H. Park, "Structural and mechanical properties of hybrid silica aerogel formed using triethoxy(1-phenylethenyl)silane", Microporous Mesoporous Mater., 298(15), 110092 (2020). https://doi.org/10.1016/j.micromeso.2020.110092
- E. N. Khimich, G. S. Buslaev, A. V. Zdravkov, N. N. Khimich, and M. G. Voronkov, "Polysiloxane structures cross-linked with hydroquinone and phloroglucinol", Russ. J. Appl. Chem., 1410, 81 (2008).
- D. B. Mahadik, Y. K. Lee, N. K. Chavan, S. A. Mahadik, and H. H. Park, "Monolithic and shrinkage-free hydrophobic silica aerogels via new rapid supercritical extraction process", J. Supercrit. Fluid., 84, 107 (2016).
- M. H. Stockett and S. B. Nielsen, "Transition energies of benzoquinone anions are immune to symmetry breaking by a single water molecule", Phys. Chem. Chem. Phys., 6996, 18 (2016).
- J. Guo, B. N. Nguyen, L. Li, M. A. B. Meador, D. A. Scheiman, and M. Cakmak, "Clay reinforced polyimide/silica hybrid aerogel", J. Mater. Chem. A., 7211, 1 (2013).
- D. B. Mahadik, H. N. R. Jung, W. Han, H. H. Cho, and H. H. Park, "Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process", Compos. Sci. Technol., 45, 147 (2017).
- A. V. Rao, R. R. Kalesh, and G. M. Pajonk, "Hydrophobicity and physical properties of TEOS based silica aerogels using phenyltriethoxysilane as a synthesis component", J. Mater. Sci., 4407, 38 (2003).
- D. B. Mahadik, A. V. Rao, A. P. Rao, P. B. Wagh, S. V. Ingale, and S. C. Gupta, "Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels", J. Colloid Interface Sci., 298, 356 (2011). https://doi.org/10.1016/j.jcis.2005.12.040
- D. B. Mahadik, A. V. Rao, V. G. Parale, M. S. Kavale, P. B. Wagh, S. V. Ingale, and S. C. Gupta, "Effect of surface composition and roughness on the apparent surface free energy of silica aerogel materials", Appl. Phys. Lett., 104104, 99 (2011).
- L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen, and C. Y. Su, "A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels", Nat. Commun., 1, 1774 (2013).
- E. P. Barret, L. G. Joyner, and P. P. Halenda, "The determination of pore volume and area distributions in porous substances", J. Am. Chem. Soc., 373, 73 (1951).
- G. Zu, K. Kanamori, T. Shimizu, Y. Zhu, A. Maeno, H. Kaji, and K. Nakanishi, "Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators", J. Shen, Chem. Mater., 2759, 30 (2018).
- D. B. Mahadik, K. Y. Lee, R. V. Ghorpade, and H. H. Park, "Superhydrophobic and compressible silica-polyHIPE covalently bonded porous networks via emulsion templating for oil spill cleanup and recovery", Sci. Rep., 16783, 8 (2018).