DOI QR코드

DOI QR Code

전기장 광화학 증착법에 의한 직접패턴 비정질 FeOx 박막의 제조 및 저항변화 특성

Electric-field Assisted Photochemical Metal Organic Deposition for Forming-less Resistive Switching Device

  • 김수민 (강원대학교 재료공학과) ;
  • 이홍섭 (강원대학교 재료공학과)
  • Kim, Su-Min (Department of Materials Science & Engineering, Kangwon National University) ;
  • Lee, Hong-Sub (Department of Materials Science & Engineering, Kangwon National University)
  • 투고 : 2020.11.06
  • 심사 : 2020.12.02
  • 발행 : 2020.12.30

초록

Resistive RAM (ReRAM)은 전이금속 산화물의 저항변화 특성을 이용하는 차세대 비휘발 메모리로 전이금속산화물 내의 산소공공의 재분포를 통한 저항변화 특성을 이용한다. 따라서 저항변화 특성을 위해 전이금속산화물 내에는 일정량 이상의 산소공공이 요구되며 이를 위해서는 박막 형성 공정에서 산화 수를 조절할 수 있는 공정이 필요하다. 본 연구에서는 직접패턴이 가능한 photochemical metal organic deposition (PMOD) 공정을 사용하여 UV 노출에 의해 photochemical metal organic precursor의 ligand가 분해되는 과정에서 전기장을 인가하여 박막내의 산화 수를 조절하는 실험을 진행하였다. Electric field assisted PMOD (EFAPMOD) 법을 이용하여 FeOx 박막의 산화 수 조절이 가능함을 x-ray photoelectron spectroscopy (XPS) 분석과 I-V 측정을 통하여 확인하였으며, EFAPMOD 공정 중 인가하는 전압의 크기를 조절하여 박막의 산화 수를 조절할 수 있음을 확인하였다. 따라서 EFAPMOD 공정 중 인가전압의 크기를 이용하여 저항변화 특성에 적합한 적정한 산화수를 가지는 금속산화물 박막을 얻고 그 저항변화 특성을 조정할 수 있음을 확인하였다.

Resistive RAM (ReRAM) is a strong candidate for the next-generation nonvolatile memories which use the resistive switching characteristic of transition metal oxides. The resistive switching behaviors originate from the redistribution of oxygen vacancies inside of the oxide film by applied programming voltage. Therefore, controlling the oxygen vacancy inside transition metal oxide film is most important to obtain and control the resistive switching characteristic. In this study, we introduced an applying electric field into photochemical metal-organic deposition (PMOD) process to control the oxidation state of metal oxide thin film during the photochemical reaction by UV exposure. As a result, the surface oxidation state of FeOx film could be successfully controlled by the electric field-assisted PMOD (EFAPMOD), and the controlled oxidation states were confirmed by x-ray photoelectron spectroscopy (XPS) I-V characteristic. And the resistive switching characteristics with the oxidation-state of the surface region could be controlled effectively by adjusting an electric field during EFAPMOD process.

키워드

참고문헌

  1. A. Sawa, "Resistive switching in transition metal oxide", Mater. Today, 11(6), 28 (2008). https://doi.org/10.1016/S1369-7021(08)70119-6
  2. O. Auciello, J. F. Scott, and R. Ramesh, "The Physics of Ferroelectric Memories", Phy. Today, 51(7), 22 (1998). https://doi.org/10.1063/1.882324
  3. S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, "Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures", Science, 276(5310), 238 (1997). https://doi.org/10.1126/science.276.5310.238
  4. J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, "GeSbTe deposition for the PRAM application", Appl. Surf. Sci., 253(8), 3969 (2007). https://doi.org/10.1016/j.apsusc.2006.08.044
  5. Z. Li and S. Zhang, "Domain-wall dynamics driven by adiabatic spin-transfer torques", Phys. Rev. B, 70(2), 024417 (2004). https://doi.org/10.1103/physrevb.70.024417
  6. H.-S. Lee, "The Latest Trends and Issues of Anion-based Memristor", J. Microelectron. Packag. Soc., 26(1), 1 (2019). https://doi.org/10.6117/KMEPS.2019.26.1.001
  7. R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges", Adv. Mater., 21(25-26), 2632 (2009). https://doi.org/10.1002/adma.200900375
  8. Y.-K. Hwang, W.-Y. Lee, S.-J. Lee, and H.-S. Lee, "Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition", J. Microelectron. Packag. Soc., 27(1), 25 (2020).
  9. H. H. park, H. H. park, and R. H. Hill, "Direct-patterning of SnO2 thin film by photochemical metal-organic deposition", Sens. Actuator A-Phys., 133(2), 429 (2006).
  10. S. Xue, W. Ousi-Benomar, and R. A. Lessard, "α-Fe2O3 thin films prepared by metalorganic deposition (MOD) form Fe(III) 2-ethylhexanoate", Thin Solid Films, 250(1), 194 (1994). https://doi.org/10.1016/0040-6090(94)90185-6
  11. P. Pourghahramani and E. Forssberg, "Microstructure characterization of mechanically activated hematite using XRD line broadening", Int. J. Miner. Process., 79(2), 106 (2006). https://doi.org/10.1016/j.minpro.2006.02.001
  12. G. F. Moreira, E. R. Pecanha, M. B. M. Monte, L. S. L. Filo, and F. Stavale, "XPS study on the mechanism of starch-hematite surface chemical complexation", Miner. Eng., 110, 96 (2017). https://doi.org/10.1016/j.mineng.2017.04.014
  13. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxide: Cr, Mn, Fe, Co and Ni", Appl. Surf. Sci., 257(7), 2717 (2001). https://doi.org/10.1016/j.apsusc.2010.10.051
  14. D. Wilson and M. A. Langell, "XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature", Appl. Surf. Sci., 303, 6 (2014). https://doi.org/10.1016/j.apsusc.2014.02.006
  15. A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. Mclntyre, "Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds", Surf. Interface Anal., 36(12), 1564 (2004). https://doi.org/10.1002/sia.1984
  16. J. D. Kim, Y. J. Baek, Y. J. Choi, C. J. Kang, H. H. Lee, H. M. Kim, K. B. Kim, and T. S. Yoon. "Investigation of analog memristive switching of iron oxide nanoparticle assembly between Pt electrode", J. Appl. Phys., 114(22), 224505 (2013). https://doi.org/10.1063/1.4846759
  17. L. W. Feng, C. Y. Chang, Y. F. Chang, T. C. Chang, and S. Y. Wang. "Improvement of resistance switching characteristics in a thin FeOx transition layer of TiN/SiO2/FeOx/FePt structure by rapid annealing", Appl. Phys. Lett., 96(22), 222108 (2010). https://doi.org/10.1063/1.3428777

피인용 문헌

  1. 리튬 이온 기반 멤리스터 커패시터 병렬 구조의 저항변화 특성 연구 vol.28, pp.4, 2020, https://doi.org/10.6117/kmeps.2021.28.4.041