DOI QR코드

DOI QR Code

Bonding Technologies for Chip to Textile Interconnection

칩-섬유 배선을 위한 본딩 기술

  • Kang, Min-gyu (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Kim, Sungdong (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Science and Technology)
  • 강민규 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과)
  • Received : 2020.12.18
  • Accepted : 2020.12.30
  • Published : 2020.12.30

Abstract

This paper reviews the recent development of electronic textile technology, mainly focusing on chip-textile bonding. Before the chip-textile bonding, a circuit on the textile should be prepared to supply the electrical power and signal to the chip mounted on the fabrics. Either embroidery with conductive yarn or screen-printing with the conductive paste can be applied to implement the circuit on the fabrics depending on the circuit density and resolution. Next, chip-textile bonding can be performed. There are two choices for chip-textile bonding: fixed connection methods such as soldering, ACF/NCA, embroidery, crimping, and secondly removable connection methods like a hook, magnet, zipper. Following the chip-textile bonding process, the chip on the textile is generally encapsulated using PDMS to ensure reliability like water-proof.

웨어러블 소자를 구현하기 위한 칩-섬유 접합 기술을 중심으로 전자 섬유에 대한 기술 개발 동향을 소개한다. 전자 부품을 섬유에 접합하기 위해서는 먼저 전자 부품에 전원 공급 및 전기적 신호를 주고 받기 위한 회로를 섬유에 구성해야 하며, 회로의 해상도와 밀도에 따라 전도성 실을 이용하는 자수법 또는 전도성 페이스트 등을 이용한 프린트법을 통해 구현할 수 있다. 전자 부품과 섬유를 접합하기 위해서는 솔더링, ACF/NCA, 자수법, 크림핑 등의 방법을 이용하여 영구적으로 접합하거나 후크, 자석, 지퍼 등을 이용하여 탈부착이 가능하도록 접합하는 방법이 있으며, 접합 배선의 밀도 및 용도에 따라서 단독 또는 융합하여 사용한다. 접합 이후에는 방수 등 사용환경에서의 신뢰성을 확보하기 위해 encapsulation 작업을 수행해야 하며, 현재는 PDMS 등의 폴리머를 이용한 방법이 널리 쓰이고 있다.

Keywords

References

  1. S. K. Park and W. K. Kim, "Electronics and Smart Textiles", Polymer Science and Technology, 24(1), 38 (2013).
  2. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X. M. Tao, "Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications", Adv. Mater., 26, 5310 (2014). https://doi.org/10.1002/adma.201400633
  3. M. Yang, J. Pan, A. Xu, L. Luo, D. Cheng, G. Cai, J. Wang, B, Tang, and X. Wang, "Conductive Cotton Fabrics for Motion Sensing and Heating Applications", Polymers, 10, 568 (2018). https://doi.org/10.3390/polym10060568
  4. H. J. Kim, "Commercialization of Conductive Yarn and Fabrics", Fiber Technology and Industry, 22(3), 210 (2018).
  5. J. Lee, H. Kwon, J. Seo, S. Shin, J. H. Koo, C. Pang, S. Son, J. H. Kim, Y. H. Jang, D. E. Kim, and T. Lee, "Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics", Adv. Mater., 27, 2433 (2015). https://doi.org/10.1002/adma.201500009
  6. S. S. Yoon, K. E. Lee, H. J. Cha, D. G. Seong, M. K. Um, J. H. Byun, Y. Oh, J. H. Oh, W. Lee, and J. U. Lee, "Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors", Sci. Rep., 5, 16366 (2015). https://doi.org/10.1038/srep16366
  7. A. Sumboja, J. Liu, W. G. Zheng, Y. Zong, H. Zhang, and Z. Liu, "Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design", Chem. Soc. Rev., 47, 5919 (2018). https://doi.org/10.1039/c8cs00237a
  8. D. A. Hardy, I. Anastasopoulos, M.-N. Nashed, C. Oliveira, T. Hughes-Riley, A. Komolafe, J. Tudor, R. Torah, S. Beeby, and T. Dias, "Automated insertion of package dies onto wire and into a textile yarn sheath", Microsystem Technologies, 1 (2019).
  9. J. Liang, K. Tong, and Q. Pei, "A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors", Adv. Mater., 28, 5986 (2016). https://doi.org/10.1002/adma.201600772
  10. W. Wu, "Stretchable electronics: functional materials, fabrication strategies and applications", Science and Technology of Advanced Materials, 20(1), 187 (2019). https://doi.org/10.1080/14686996.2018.1549460
  11. M. Jablonski, F. Bossuyt, J. Vanfleteren, T. Vervust, and H. de Vries, "Reliability of a stretchable interconnect utilizing terminated, in-plane meandered copper conductor", Microelectronics Reliability, 53, 956 (2013). https://doi.org/10.1016/j.microrel.2013.04.002
  12. N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, and T. Someya, "Printable elastic conductors with a high conductivity for electronic textile applications", Nat. Commun., 6, 7461 (2015). https://doi.org/10.1038/ncomms8461
  13. I. Kazani, C. Hertleer, A. Schwarz-Pfeiffer, and G. Guxho, "Electrical Conductive Textiles Obtained by Screen Printing", Fibres & Textiles in Eastern Europe, 20(1), 57 (2012).
  14. O. Ojuroye, R. Torah, and S. Beeby, "Modified PDMS packaging of sensory e-textile circuit microsystems for improved robustness with washing", Microsystem Technologies, 1 (2019).
  15. S. Schneegass and O. Amft, "Smart Textiles", Springer (2017).
  16. X. Lin, B.-C. Seet, and F. Joseph, "Fine-pitch surface component mounting on screen-printed fabric circuits", Electron. Lett., 52(16), 1032 (2016). https://doi.org/10.1049/el.2016.1044
  17. M. E. Berglund, "Delocalizing Strain in an Interconnected Joint on a Textile Substrate", Proc. ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, 571 (2018).
  18. S.-Y. Jung, H. E. Hong, and K.-W. Paik, "A Study on the Curod Anisotropic Conductive Films (ACFs) for Flex-on-Fabric (FOF) Interconnections using an Ultrasonic Bonding Method", Proc. 66th Electronic Components and Technology Conference, 2245, IEEE (2016).
  19. T. Linz, M. von Krshiwoblozki, H. Walter, and P. Foerster, "Contacting electronics to fabric circuits with nonconductive adhesive bonding", The Journal of The Textile Institute, 103(10), 1139 (2012). https://doi.org/10.1080/00405000.2012.664867
  20. T. Linz, "Analysis of Failure Mechanisms of Machine Embroidered Electrical Contacts and Solutions for Improved Reliability", in Ph.D. Thesis, pp.188, Ghent University, Ghent, Belgium (2011).
  21. E. P. Simon, C. Kallmayer, M. Schneider-Ramelow, and K. D. Lang, "Development of a Multi-Terminal Crimp Package for Smart Textile Integration", Proc. 4th Electronic System-Integration Technology Conference (ESTC), Amsterdam, Netherlands, 1, IEEE (2012).
  22. T. Linz, C. Kallmayer, R. Aschenbrenner, and H. Reichl, "New interconnection technologies for the integration of electronics on textile substrates", Proc. International Scientific Conference on Intelligent Ambience and Well-Being, 19 (2005).
  23. T. Vervust, G. Buyle, F. Bossuyt, and J. Vanfleteren, "Integration of stretchable and washable electronic modules for smart textile applications", Journal of The Textile Institute, 103(10), 1127 (2012). https://doi.org/10.1080/00405000.2012.664866
  24. https://www.adafruit.com/product/1324
  25. X. Righetti and D. Thalmann, "Proposition of a modular I2C-based wearable architecture", Proc. 15th Mediterranean Electrotechnical Conference (MELECON), Valletta, Malta, 802, IEEE (2010).
  26. H. Ohno, F. Narui, and S. Hayashi, "Zipper-type electrical connector", Patent US5499927A (1996).
  27. J.-Y. Choi, D.-W. Park, and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). https://doi.org/10.6117/kmeps.2014.21.4.125
  28. H. G. Kim, H. K. Rho, A. Cha, M. J. Lee, and J.-S. Ha, "CNT-Ni-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices", J. Microelectron. Packag. Soc., 27(2), 39 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.039
  29. J. Y. Park, "IEC Standardization trend of Smart Wearable Devices", The Magazine of the IEIE, 45(12), 16 (2018).
  30. H. J. Koo and K. M. Lee, "Standardization Trend of E-textiles", The Magazine of the IEIE, 45(12), 37 (2018).
  31. G. De Pasquale and A. Mura, "Accelerated lifetime tests on e-textiles: Design and Fabrication of Multifunctional Test Bench", Journal of Industrial Textiles, 47(8), 1925 (2018). https://doi.org/10.1177/1528083717714483